• Title/Summary/Keyword: Orbit Environment

Search Result 245, Processing Time 0.023 seconds

A Study of the flight s/w test environment for the LEO satellite (저궤도위성 탑재소프트웨어 시험환경에 대한 연구)

  • Chae, Dong-Seok;Lee, Jae-Seung;Choi, Jong-Wook;Yang, Seung-Eun;Lee, Jong-In
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.45-51
    • /
    • 2007
  • The various levels of test are performed to verify the correctness, completeness, and quality of the developed flight software. The three main test levels are unit test, integration test and verification test. The flight software unit test is performed on the individual PC environment using target simulator. And integration and verification test is mainly performed on STB(S/W Test Bed) which provides test and debugging environments for flight software on the target board This document is to present the test environment for the next generation low earth orbit satellite flight software development.

  • PDF

Development Trend of Geostationary Environment Monitoring Payloads (환경감시용 정지궤도위성 탑재센서 개발동향)

  • Lee, Seung-Hoon;Kim, Sung-Kyu;Yeon, Jeoung-Heum;Kim, Seong-Hui;Ko, Dai-Ho;Yong, Sang-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.31-38
    • /
    • 2010
  • Environment and climate changes affect all aspects of our society. The enhanced remote sensing technology made the satellite to be widely used in the environment monitoring applications. Geostationary environmental monitoring is also actively researched due to the increased needs for the monitoring of diurnal environmental changes, troposhperic pollution and its origin. In this paper, recent development trends of geostationary environment monitoring payloads are introduced. GEO-CAFE and GIFTS missions are researched by the leading of the NASA and Sentinel-4 by the ESA. Those missions are in the state of detailed conceptual design and hardware development preparing with the launch plan in the late 2010s. By considering these development trends, domestic environment monitoring payloads shall be developed with careful analysis on the mission and data application.

  • PDF

Algorithm to cope with SEUs(Single Event Upsets) on STSAT-1 OBC(On-board Computer) (과학기술위성 1호 탑재 컴퓨터(On-board Computer)에서의 SEUs(Single Event Upsets) 극복 알고리즘)

  • Chung, Sung-In;Park, Hong-Young;Lee, Heung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.10-16
    • /
    • 2008
  • Generally, the satellite circling round in a low orbit goes through Van Allen belt connecting with the magnetic fold, in which electronic components are easily damaged and shortened by charged particles moving in a cycle between the South Pole and the North Pole. In particular, Single Event Upset(SEU) by radiation could cause electronic device on satellite to malfunction. Based on the idea mentioned above, this study considersabout SEU effect on the On-board Computer(OBC) of STSAT-1 in the space environment radiation, and shows algorithm to cope with SEUs. In this experiment, it also is shown that the repetitive memory read/write operation called memory wash is needed to prevent the accumulation of SEUs and the choice for the period of memory wash is examined. In conclusion, it is expected that this research not only contributes to understand low capacity of On-board Computer(OBC) on Low Earth Orbit satellite(LEOS) and SaTReC Technology satellite(STSAT) series, but also makes good use of each module development of Korea Multi-Purpose Satellite(COMPSAT) series.

Design for Reliability of Air-Launching Rocket, MirinaeII Using FMEA(Failure Modes and Effects Analysis) (FMEA를 통한 공중발사 로켓, 미리내II의 신뢰성 설계)

  • Kim, Jin-Ho;Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Kim, Kyung-Mee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1193-1200
    • /
    • 2008
  • The procedure of design for reliability which consists of reliability analysis and Failure Modes and Effects Analysis(FMEA) is established and reliability assesment is performed for the nano-satellite air-launching rocket, Mirinae II. By means of using the reliability analysis result, the feasibility to insert the Mirinae II to the target orbit for given mission time under operating environment is assessed. During the reliability analysis process, the system is categorized by Work Breakdown Structure(WBS), and reliability structure is defined by both Reliability Block Diagram(RBD) and schematics of the system. FMEA is used to determine the risk priority number of components and parts. The target reliability is satisfied by changing the design of components and parts with high-risk, hence the design for reliability to put the satellite in to the target orbit safely has been performed.

ANALYSTS OF DAMAGE PROBABILITY FOR COLLISION BETWEEN SPACE DEBRIS AND A SATELLITE IN LOW-EARTH ORBIT (우주파편에 의한 저궤도 위성의 손상확률 분석)

  • Lee, Jae-Eun;Park, Sang-Young;Kim, Young-Rok;Choi, Kyu-Hong;Kim, Eung-Hyun;Kim, Gyu-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Space environment becomes more hazardous for satellite because of increasing number of space debris. This research is to analyze collision hazards between KOMPSAT 3 in low-earth orbit and space debris generated by the explosion of FengYun satellite on the January 11, 2007. Based on the observed data of the space debris from FengYun satellite, the mass and number distribution of the debris are estimated including undetectable debris from the explosion of FengYun satellite. The spatial density and flux for the space debris can be calculated according to size. This study also brings out the analysis for the assessment of collision probability and damage probability. The algorithm developed in the current paper can be used to estimate the level of risk due to space debris for the satellites that will be launched in the future.

EFFECTS OF SOLAR ACTIVITY AND SPACE ENVIRONMENT IN 2003 OCT. (2003년 10월의 태양활동과 우주환경의 영향)

  • Cho, Kyung-Seok;Moon, Yong-Jae;Kim, Yeon-Han;Choi, Sung-Whan;Kim, Rok-Soon;Park, Jong-Uk;Kim, Hae-Dong;Lim, Mu-Taek;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.315-328
    • /
    • 2004
  • In this paper, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. Especially, we present several solar and geomagnetic disturbance data produced in Korea : sunspots, geo-magnetograms, aurora, Ionogram, and Total Electron Content (TEC) map by GPS data. Finally, we introduce some examples of the satellite orbit and communication effects caused by these activities; e.g., the disturbances of the KOMPSAT-1 operational orbit and HF communication.

Analysis of the Single Event Effect of the Science Technology Satellite-3 On-Board Computer under Proton Irradiation (과학기술위성 3호 온보드 컴퓨터의 양성자 빔에 의한 Single Event Effect 분석)

  • Kang, Dong-Soo;Oh, Dae-Soo;Ko, Dae-Ho;Baik, Jong-Chul;Kim, Hyung-Shin;Jhang, Kyoung-Son
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1174-1180
    • /
    • 2011
  • Field Programmable Gate Array(FPGA)s are replacing traditional integrated circuits for space applications due to their lower development cost as well as reconfigurability. However, they are very sensitive to single event upset (SEU) caused by space radiation environment. In order to mitigate the SEU, on-board computer of STSAT-3 employed a triple modular redundancy(TMR) and scrubbing scheme. Experimental results showed that upset threshold energy was improved from 10.6 MeV to 20.3 MeV when the TMR and the scrubbing were applied to the on-board computer. Combining the experimental results with the orbit simulation results, calculated bit-flip rate of on-board computer is 1.23 bit-flips/day assuming in the worst case of STSAT-3 orbit.

DESIGN AND IMPLEMENTATION OF THE SMALL SATELLITE ON-BOARD COMPUTER SYSTEM : KASCOM (소형위성의 제어를 위한 컴퓨터 시스템의 설계 및 구현)

  • 김기형;김형신;박재현;박규호;최순달
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.52-66
    • /
    • 1996
  • In this paper, we present the design methodology of KASCOM(KAIST satellite computer), the experimental on-board computer system of KITSAT-2. The design of the on-board computer system should consider the following constraints: operational throughput, fault tolerant input-output, low power, size, weight, and radiation hardness. KASCOM is designed to satisfy these constraints. This paper also presents the implementation and testing details of KASCOM. Finally, the in-orbit operational results are presented. The results show that about 2 SEU errors occur for the program memory(1Mbit SRAM) in a day, while 3.7 SEU errors occur for the data memory(4Mbit SRAM). This implies that high-integrated memories are more susceptible to the radiation environment than low-integrated memories.

  • PDF

Thermal Model Correlation and Heater Design Verification for LEO Satellite Optical Payload's Thermal Analysis Model Verification (저궤도 위성 광학탑재체의 열해석 모델 검증을 위한 열모델 보정 및 히터 설계)

  • Kim, Min-Jae;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1069-1076
    • /
    • 2011
  • All of the satellite components must be operated within the permissible temperature range during the mission in orbit. Therefore, thermal design is performed to develop verified thermal model and to secure thermal stability on the ground. In this study, thermal model correlation was performed to satisfy the criteria of correlation using ground thermal vacuum/thermal balance test results of LEO satellite optical payload. We also secured verified thermal model by controlling operating cycle of flight heaters. In addition, it was confirmed that all components are within the permissible temperature range through conducting orbit environment thermal analysis. We also secured thermal stability of the satellite.

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.