• Title/Summary/Keyword: Orbit Control

Search Result 481, Processing Time 0.026 seconds

Correction and Positioning of Remote Sensing Image Base on Orbit Parameter

  • Cheng, Chunquan;Zhang, Jixian;Yan, Qin;Wang, Yali
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1212-1214
    • /
    • 2003
  • The usual technique of correction and positioning of film image of RS require enough control points to provide the geographic coordinate. Some distortion and error caused by earth curvature and terrain and photograph tilt can't be eliminated by these ways. In this paper a set of technique of systemic correction and positioning of remote sensing image base on orbit parameter is described, some questions in its realization and their solvent also included.

  • PDF

Station Collocation of Geostationary Spacecraft Via Direct Control of Relative Position (상대위치 직접 제어를 통한 정지궤도 위성의 Collocation에 관한 연구)

  • Lee, Jae-Gyu;No, Tae-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.56-64
    • /
    • 2006
  • Station collocation of closely placed multiple GEO spacecraft is required to avoid the problem of collision risk, attitude sensor interference and/or occultation. This paper presents the method of obtaining the orbit correction scheme for collocating two GEO spacecraft within a small station-keeping box. The relative motion of each spacecraft with respect to the virtual geostationary satellite is precisely expressed in terms of power and trigonometry functions. This closed-form orbit propagator is used to define the constraint conditions which meet the requirements for the station collocation. Finally, the technique of constrained optimization is used to find the orbit maneuver sequence. Nonlinear simulations are performed and their results are compared with those of the classical method.

Batch Unscented Transformation for Satellite Orbit Determination Using A Satellite Laser Ranging (SLR)

  • Seo, Kyoung-Seok;Park, Sang-Young;Park, Eun-Seo;Kim, Young-Rok;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.34.2-34.2
    • /
    • 2008
  • The batch least square filter is widely used for ground estimations. However, in orbit determination (OD) under inaccurate initial conditions and few measurement data the performance by the batch least square filter can lead an unstable results. To complement weak part of the batch filter, the batch unscented transformation without any linearization process is developed by ACL (Astrodynamics and Control Laboratory) in YONSEI University. In this paper, the batch unscented transformation is introduced and applied to satellite orbit determination using Satellite Laser Ranging (SLR) data. Only range of the satellite measured from ground tracking stations is used for measurement data. The results of simulation test are compared with those of the weighted batch least square filter for various initial states errors (position and velocity). Simulation results show that the batch unscented transformation is comparable or slightly superior to batch least square filter in the orbit determination.

  • PDF

Integrity, Orbit Determination and Time Synchronisation Algorithms for Galileo

  • Merino, M.M. Romay;Medel, C. Hernandez;Piedelobo, J.R. Martin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.9-14
    • /
    • 2006
  • Galileo is the European Global Navigation Satellite System, under civilian control, and consists on a constellation of medium Earth orbit satellites and its associated ground infrastructure. Galileo will provide to their users highly accurate global positioning services and their associated integrity information. The elements in charge of the computation of Galileo navigation and integrity information are the OSPF (Orbit Synchronization Processing Facility) and IPF (Integrity Processing Facility), within the Galileo Ground Mission Segment (GMS). Navigation algorithms play a key role in the provision of the Galileo Mission, since they are responsible for computing the essential information the users need to calculate their position: the satellite ephemeris and clock offsets. Such information is generated in the Galileo Ground Mission Segment and broadcast by the satellites within the navigation signal, together with the expected a-priori accuracy (SISA: Signal-In-Space Accuracy), which is the parameter that in fault-free conditions makes the overbounding the predicted ephemeris and clock model errors for the Worst User Location. In parallel, the integrity algorithms of the GMS are responsible of providing a real-time monitoring of the satellite status with timely alarm messages in case of failures. The accuracy of the integrity monitoring system is characterized by the SISMA (Signal In Space Monitoring Accuracy), which is also broadcast to the users through the integrity message.

  • PDF

ATTITUDE DETERMINATION AND CONTROL SYSTEM OF KITSAT-1 (우리별 1호의 자세제어 시스템)

  • 이현우;김병진;박동조
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.67-81
    • /
    • 1996
  • The attitude dynamics of KITSAT-1 are modeled including the gravity gradient stabilization method. We define the operation scenario during the initial attitude stabilization period by means of a magnetorquering control algorithm. The required constraints for the gravity gradient boom deployment are also examined. Attitude dynamics model and control laws are verified by analyzing in-orbit attitude sensor telemetry data.

  • PDF

SOME PHASE PORTRAITS OF PLANAR CONTROL SYSTEMS

  • Lee, Hyung-Jae;Hwang, Soo-Man
    • The Pure and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.67-77
    • /
    • 1999
  • In this paper we study periodic orbit of some planar control systems and investigate phase portraits of the FSs.

  • PDF

Thermal Behavior of Spacecraft Liquid-Monopropellant Hydrazine($N_2$$H_4$) Propulsion System (인공위성 단기액체 하이드라진($N_2$$H_4$) 추진시스템의 열적 거동)

  • Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1999
  • Thermal behavior of spacecraft propulsion system utilizing monopropellant hydrazine ($N_2$$H_4$) is addressed in this paper. Thermal control performance to prevent propellant freezing in spacecraft-operational orbit was test-verified under simulated on-orbit environment. The on-orbit environment was thermally achieved in space-simulation chamber and by the absorbed-heat flux method that implements an artificial heating through to the spacecraft bus panels enclosing the propulsion system. Test results obtained in terms of temperature history of propulsion components are presented and reduced into duty cycles of the avionics heaters which are dedicated to thermal control of those components. The duty cycles are subsequently converted into the electrical power required in the operational orbit. Additionally, cyclic temperature of each component, which was made under thermal-balanced condition of spacecraft, is compared to the acceptable design range and justified from the viewpoint of system verification.

  • PDF

In-Orbit Test Operational Validation of the COMS Image Data Acquisition and Control System (천리안 송수신자료전처리시스템의 궤도상 시험 운영 검증)

  • Lim, Hyun-Su;Ahn, Sang-Il;Seo, Seok-Bae;Park, Durk-Jong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • The Communication Ocean and Meteorological Satellite(COMS), the first geostationary observation satellite, was successfully launched on June 27th in 2010. The raw data of Meteorological Imager(MI) and Geostationary Ocean Color Imager(GOCI), the main payloads of COMS, is delivered to end-users through the on-ground processing. The COMS Image Data Acquisition and Control System(IDACS) developed by Korea Aerospace Research Institute(KARI) in domestic technologies performs radiometric and geometric corrections to raw data and disseminates pre-processed image data and additional data to end-users through the satellite. Currently the IDACS is in the nominal operations phase after successful in-orbit testing and operates in National Meteorological Satellite Center, Korea Ocean Satellite Center, and Satellite Operations Center, During the in-orbit test period, validations on functionalities and performance IDACS were divided into 1) image data acquisition and transmission, 2) preprocessing of MI and GOCI raw data, and 3) end-user dissemination. This paper presents that IDACS' operational validation results performed during the in-orbit test period after COMS' launch.

VARIATION OF LOCAL TIME OF ASCENDING NODE DUE TO THE ALTITUDE DECAY OF SUN-SYNCHRONOUS SATELLITE (태양동기위성의 고도감소에 의한 승교점 통과시각의 변화)

  • Lee Byoung-Sun;Hwang Yoo-La;Kim Hae-Yeon;Yoon Jae-Cheol;Kim Hae-Dong;Kim Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.127-134
    • /
    • 2006
  • Variation of the Local Time of Ascending Node (LTAN) has been analysed according to initial inclinations when the altitude of Sun-synchronous satellite is continuously decreased due to the atmospheric drag. Orbit predictions of 3 years have been performed with the satellite of 500 km altitude when the initial LTAN were set to 06:00, 09:00, 12:00, 15:00, and 18:00. Different profiles of the inclination and LTAN have been obtained according to the satellite altitude decay and initial LTAN value. Using the profiles of the inclination and LTAN, initial orbital elements can be derived for minimizing the LTAN variations during the mission life time of the sun-synchronous satellite without any on-board thrusters for orbit maneuvers.

On-orbit Thermal Control of MEMS Based Solid Thruster by Using Micro-igniter (MEMS 기반 고체 추력기의 마이크로 점화기를 이용한 궤도 열제어)

  • Ha, Heon-Woo;Kang, Soo-Jin;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.802-808
    • /
    • 2014
  • MEMS based solid propellant thruster researched for the purpose of an academic research will be verified at space environment through CubeSat program. For this, the temperature of the MEMS thruster should be within allowable operating temperature range by proper thermal control to prevent the ignition failure caused by ignition time delay and to guarantee the structural safety of the MEMS thruster in the low temperature. In this study, we proposed an effective thermal control strategy, that is to use micro-igniter as a heater and temperature sensor for active thermal control instead of using additional heater. The effectiveness of the strategy has been verified through on-orbit thermal analysis of CubeSats with MEMS thruster.