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SOME PHASE PORTRAITS OF PLANAR CONTROL SYSTEMS

HyunG JAE LEE AND SO0 MAN HWANG

ABSTRACT. In this paper we study periodic orbit of some planar control systems and
investigate phase portraits of the FSs

1. Introduction
Consider systems of the form

x' = Ax + p1(k - x)b; + p2(k - x)by (1.1)

where x = (zl ) is an R2-valued function, A4 is a 2 x 2 matrix and k = (:; ) ,b; =
2

(Z“) are in R? and - denotes the usual inner product.
i2

In this paper, we will focus our attention to studying two-dimensional systems
(1.1) satisfying the following conditions:

(a) The origin is an asymptotically equilibrium point;
(b) Two characteristic functions ¢; and (; have the following forms:

-y ifv < —uy ~ug  ifv < —ug
pi(v)=q v if—u; <v<uy, plv)=< v if —uy <v<uy
Uy ifu; <w Uy ifup < v,

where u;, us are fixed positive numbers with u; < ug;
(¢) For nonsingular matrix A, k- A~! by is in R, but for singular matrix A, b,
and b, lie in the same quadrant; and
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(d) For i =1, 2, the followings are hold:
t; =Tr (A + bikt) < 0, d; = Det (A + blkt) > 0.

where k! is the transpose of k.

Such systems will be referred to as fundamental systems, say FSs, and if by = 0,
then our systems (1.1) will correspond to the systems in [3].

The characteristic functions 1, @2 induce a partition of R? into six open strips
and four straight lines as follows:

Si— i ={xlk-x<-u}, Swo:={x| —uv1 <k-x<wu}, S+ :={xlk-x>u};
Mo ={xlk-x=—-uy}, 14 :={x|k-x = u };
So— = {x]k-x < —up}, Spo:={x| —us <k-x<wup}, Soy :={xjk-x>u};

Fo_ = {x|k-x = —us}, I'yq := {x|k -x =uy}

from which the FS splits into the following linear systems:

x' = Ax ~u1b; + (k- x)bs in (S1-UT-)\ Se—, (1.2)
x' = Ax — u;b; — usbs in (Se- UT,), (1.3)
xX' =Ax+(k-x)b; + (k-x)by in (SppUTl4)Ul;_, (1.4)
x' = Ax + uib; + (k- x)bs in (S1+UT14)\ Soq, (1.5)
x' = Ax + u1by + uaby in (824 UT24). (1.6)

As in (1.2)—(1.6), we can split into linear systems by the characteristic function ¢ of
the control mechanism, the purpose of which is to improve the asymptotic stability
behavior of the equilibrium located at the origin.

The main goal of this paper is to describe all the phase portraits of the funda-
mental system (1.1) and to distinguish among their different qualitative patterns in

terms of their basic parameters:

t =Tr(A), d = Det(A); (1.7)
t;=Tr(A+bk") <0, d;=Det(A+bk!)>0 (i=1,2); (1.8)
T = Tr(B) < 0, D =Det(B) >0 (1.9)

where B = A + by k* + bok?. The inequalities (1.8)-(1.9) reflect conditions (a) and
(d) in FSs above.
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In §2, we classify equilibria of FSs.
In §3, we study periodic orbits of planar differential systems.
In §4, we investigate phase portraits of FSs.

2. Classification of Equilibria

We introduce some known results including Jordan normal forms from those in
Llibre and Sotomayor [3] and classify equilibria of the FSs.
Consider
x' = Ax + p1(k - x)b + pa(k - x)ba. (2.1)

By the linear change of variables x = My, A can be reduced to its real Jordan
form J = M~'AM which transforms the FS into

y =Jy +o1(Mk-y) M by + oo(M'k - y)M ~'b,.

Replacing the transformed parameters Mtk by k, M ~'b; by b; and the trans-
formed variable y by x, the system can be written in the following form similar to
(2.1):

x' = Jx+ ¢1(k-x)b1 + pa(k - x)by,

where J is one of the following forms:

[0 0

1 0] if d=Det(A)=0and t="Tr(A4)=0;

A 0] .

0 O] if d=0and t#0;

0 6 (with 8>0) if d>0 t=0;

=8 0]

B\ 0] A 0 a B _ ' . .

_ 01 A2J’ [11 A1:| T l:—ﬂ a:| (Wlth Slgn(/\i)zmgn(a):&gn(t)
and 8> 0)ifd >0, t # 0; and

(A1 0] . .

_01 A2 (with A\; <0 < Xg) if d<O.
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Proposition 1.
(1) Ifd >0, then the origin is the unique equilibrium of the FSs (1.1).
(2) Ifd <0, then there are three equilibria for the F'S:
0 in S0, which is always an hyperbolic attractor;

€+ = —'U.lA_lbl - 'U,2A_1b2 in Sz+
1 L , which are both saddle points.
ea_ = wA by +usA by in Sp.
Proof. (1) Assume that d = Det(B) # 0 and dz = Det (A + bok®) # 0.
From (1.2)—(1.6), if e;- € S1- \ S24, e1+ € S1- \ Soy,e2- € Sa_,e24 € Soy,
then it is easy to see that they are the unique equilibrium points of the FS on
(Sl_ U Fl_) \ Sa_, (Sl+ U F1+) \ Soy,82- UTa, S Uy, where

€1 = ul(A + b2kt)_1b1, €14 = —ul(A + bzkt)_lbl.
Let k = ky , J = (ai), by = b11> and b, = b1 . We have the
k2 70 b12 b22
following equivalences:

I
es_ € 55, egy € So_

if and only if
{ k- (unglbl) +k- (U2J~1b2) < —ug,
k- (—ulJ_lbl) + k- (—U2J_1b2) > ug

if and only if

1w asy —az | [b11 a2 —a2 || ba
il ) ki. k —1.
7 (] o | | £ R Rl TP [ R

II.
e1— € 81 \ Sa_, €14 € S]_.;. \ Sz+
if and only if
{ —uy < k- {u1(J + bzkt)_lbl} < —-ug,
u < k- {-—ul(J + bzkt)_lbl} < up
if and only if
U2

1
“u < d—z{kl(azzbu — a12b12) + kz(a11b12 — ag21bn1)} < -1
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The case d > 0 gives us that e;_ € So_, ea_ € Sa4 if and only if
u
d+ u—l{kl(ambu — a12b12) + k2(a11b12 — a21b11)}
2
+{k1(agaba1 — a12b22) + k2(a11ba2 — a21b21)} < 0.

Since k- A~'b; <0 and D = Det (4 + b;k* + bgk?) >0 and w1 <1, we have
ea— & So_ and ex4 & Sas.
Since dy > 0, we find that

ej— € S1- \ Sa_  and el € Sl+ \S2+ (2.2)
if and only if
u
—a—jdz < k1(a11b11 — a12b12) + ka(a11b12 — ag1b11)} < —da.

From above inequality, we see that (2.2) implies
dz + k1(a11b11 — a12b12) + k2(a11b12 — az21b11)} < 0, (2.3)

in view of dy = d + kl(a22b21 — a2b22) + kz(allbzg — ag1b21), the left side of (2.3)
becomes D.
Thus we have ey & S1- \ S2— and e1y & S14 \ Sa4.
On the other hand the case d < 0 gives us that e;_ € S3_ and egy € Sy if and
only if
d+ Z—;{k(azzbu — a12b12) + kz(a11b12 — a21b11)}

+{k1(agoba1 — a12b22) + k2(azibea — az1b11)} > 0
if and only if

u
do + E;—{k‘(agzbll — a12b12) + k2(a11b12 — az21b11)} > 0
if and only if
d2 + {k1(azzb11 — a12b12) + k2(a11b12 — @21b11)} > 0 (see condition (c) of §1)

if and only if
D = Det(A + b k* + byk*) > 0.

Thus e;— and ez are equilibrium points.
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In view of condition (d) of §1, we also see that e;— € S1_\S2—, €14+ € S14+\S24
if and only if

u
—z—fab < {k1(a22b11 — a12b12) + ka(a11b12 — a21611)} < —da,
which implies
dy + k1(a22b11 — ai2bi2) + k2(azibiz — a21b11) < 0.

However k- A~'b; < 0 and d < 0, from which we find that e;_ ¢ S;_ \ Sy_ and
er € S14 \ S24.

Therefore 0 is the unique equilibrium point when d > 0 and 0, e;_ and ey, are
the unique equilibrium points when d < 0.

(2) If d = 0, we have only two possibilities for the Jordan form J of A as

00 A0
[1 0} or {0 0} (A#0).
It follows easily from condition (c) of §1 that 0 is the unique equilibrium point
of the FS. O

follows:

3. Periodic Orbits of FS

We will study some properties of periodic orbits of planar differential systems.

Proposition 2. If a fundamental system has a periodic orbit or a double saddle
connection, then its basic parameter t = Tr(A) > 0.

Proof. By the similar argument used in Proposition 3 in [1], any segment on the
lines (I'14, I'1—, P24, I's_) cannot be a part of an orbit of the FS.
Therefore, the integrals

Xidzo — Xodz1 and 7{%(6){1/8121 + 6X2/3.’L‘2)d(121d$2
a8 S

are well defined for a FS whose components are X; and X, 88 is periodic orbit or
double saddle connection and S is the region bounded by 8S5.
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Since Xi1dzy — Xodz, = 0 along 88, it follows from Green’s formula that
0= f f (BXl/ml -+ 6X2/!L‘2)d.’171d.’132
S

=%% t dz1dxo -I—ff todridza
SN (S24US2-) SN{(81-\82-)U(S1+\524)}

+ f f T dzydzs,
SnS1o

which is written in the following equivalent form:

t Area(S N (S24 U S2-)) + taArea[S N {(S1— \ S2-) U (S14+\ So) H
+7T Area(S N Syo) =0,

which, in virtue of (1.8) and (1.9), immediately yields t > 0. O

Our next result shows that fundamental systems with periodic orbits can be
written in the form of Lienard systems (cf. [3]), for which a practical criterion for
uniqueness will be established. We can prove easily the following proposition by
the similar argument used in the proof of Proposition 4 in [3].

Proposition 3. Assume that a fundamental system
x' =Jx+ <p1(k . X)bl + (pz(k . X)bg (3.1)

has a periodic orbit or a double saddle connection (DSC) and letd, t, da, D, T be
its basic parameters (see (1.7)-(1.8)). Then after a linear change from x = (1, z3)
to the variables (z, y) and a reversing of the time variable, the FS (3.1) can be
written in Lienard form:

{ ' =y-F(z)
y = —g(z)
where
9(z) = dz + p1(z)(d1 — d) + p2(z)(d2 ~ d)
and

F(z) =tz + p1(z)(t1 — 1) + pa(z)(t2 — 1)
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Theorem 4 [3]. Consider the Lienard system

{a:’zy—F(:r;)

y' = —g(z) 42

which are defined either in the whole R? or in the open strip
S={(z,y) eER?| —z1—e<z <21 +6}

for some 1 > 0 and € > 0.
I. Suppose that system (3.2) is defined in R? and satisfies the following assumyp-
tions:
(1) F and g satisfy a Lipschitz condition on any bounded interval;
(ii) g is an odd function such that zg(z) > 0 if x # 0; and
(iii) F' is an odd function such that there exists zo > 0 for which F(z) < 0 if
0 <z <z, and F'(z) >0 if z > zo.
II. Suppose that the system (3.2) is defined in S and satisfies the following assump-
tions:
(i)’ F and g satisfy a Lipschitz condition on the interval —z; —e < x < z1+¢€;
(i) g is an odd function such that zg(z) > 0 in (0, z1) and g(z;) = 0;
(iii)) F is an odd function such that there exists zop > 0 with 0 < zo < 7 for
which F(z) < 0if0 <z < zo, and F'(z) > 0 if z > z¢; and
(iv) The two equilibria eay = (21, F(21)), e2~ = (—z1, F(~z1)) have index —1
and the origin has indez 1.

Then, in both cases I and I1, the system (8.2) has at most one periodic orbit.
Proof. See [3]. O

Using Proposition 3 and Theorem 4, we can show that any fundamental system
has at most one periodic orbit.

Corollary 5. Every FS has at most one periodic orbit.

Proof. Let d, t, d;, t;, D and T be the basic parameters of a given FS (3.1).
By Proposition 3, the system (3.1) can be written as the Lienard system (3.2) as

{ ' =y— F(z)
Y = —g(z)

follows:
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where

g(z) = dz + p1(z)(d1 — d) + pa(z)(d2 — d),
F(z) =tz + p1(z)(t1 — 1) + @2(z)(t2 — t).
Since d;, t > 0 and t; < 0, it follows easily that g and F satisfy assumptions

(i)-(iii) when d > 0, and satisfy assumptions (i)’-(iv)’ when d < 0. Therefore, by
Theorem 4, the corollary is established. [J

From Proposition 2, Corollary 5 and Propositions 7 and 9 in [3], we obtain the
following theorem.

Theorem 6.

(a) Ifthe FS (1.1) has a periodic orbit or a double saddle connection, thent > 0.
Moreover, both situations cannot coezist on the same FS;

(b) The FS (1.1) has at most one periodic orbit, which moreover must be un-
stable.

4. Phase Portraits for FSs

Consider an FS
x = Jx+ p1(k-x)b; + p2(k - x)bs. (4.1)

Let d, t, d;, t;, D and T be its basic parameters (See (1.7)-(1.8)). The following
lemma is the standard integral representation of solutions of differential systems.

Lemma 7. If x(s) is a solution of a fundamental system (4.1), then
x(s) = e7°x(0) + / &7 {1 (k - x(r))by + wa(k - x(r))bg}dr-
0

Proof. 1t follows immediately by differentiation. [J

Proposition 8. Ifd > 0 and t < 0, then Q(0) = R2, where Q(0), being of consid-
erable interest in control theory, denotes the basin of attraction, or stable manifold,
of the origin of a FS.

Proof. From the definitions of J and ¢; there are positive constants L, K; and r
such that [|e’5|| < Le~" and |p;(k - x)b;| < K;. Letting K = max{Ki, K5}, we
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find that s
Ix(s)| < Le~"™ (|x(0)| +2K / e’"dr)
0

=L (’X(O)l - ¥> | 2KL

Hence, every solution of the FS has its w-limit set contained in the ball of center
0 and radius 2LK/r.
From Propositions 1 and 2, the system has the origin as unique equilibrium and

r

does not have periodic orbits. By Poincare-Bendixson theorem, we get Q(0) =
RZ. O
Proposition 9. Ifd =0 and t < 0, then Q(0) = R2.

Proof. We can assume that the matrix J is in Jordan form:

[AO- g} (t=A_ <0).

Let x(s) = (z1(s), z2(s)) be a solution of the fundamental system. From Lemma

7, we have that
122(0)] + /
0

By the definition of ;, there are two positive constants K7, Ks such that
lp1(k-x)b1| < Ky and |pa(k - x)by| < K.

j2i(s)] < |e*-)° P (jo1 (k- x(r)by | + [pa(k - x(r))bel)dr.

Letting K = max{K1, Ky}, we see that

8 8
21(s)] < -8 <|x1(0)1+K1 / =) dr 4 K, / |e—(*—>f|dr)
0 0

S
< elr-)s <|x1(0)| + 2K/ le= (=) dr)
0

2K 2K
= e(A_)s (le(O)‘ + )\——) - ')t,

from which it follows that
. 2K
lim < ——.

It follows that the solutions of the FS have their w-limit sets on the vertical strip
S bounded by straight lines z; = :i:i—ff, which turns out to be positively invariant
under the flow.

Thus, we have that £(0) = R2. by the same argument as in the last part of the
proof of Proposition 12 in [3]. O
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Proposition 10. If d > 0 and t = 0, then Q2(0) = R2.

Proof. 1t follows by the similar argument as in the proof of Proposition 13 in [3]. O
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