• Title/Summary/Keyword: Oral health importance

Search Result 252, Processing Time 0.019 seconds

Skeletal relapse and dental change during intermaxillary fixation after mandibular setback (외과적 하악 후퇴술 후 악간고정기간 중의 골격성 재발과 치열의 변화)

  • Chang, Chong-On
    • The korean journal of orthodontics
    • /
    • v.29 no.4 s.75
    • /
    • pp.457-466
    • /
    • 1999
  • It has been reported that skeletal relapse and dental change after mandibular setback do occur not only after intermaxillary fixation(IMF) removal but also during IMF The side effects of skeletal relapse during IMF have clinical importance because they can cause many Postoperative orthodontic Problems. Generally, the Prevention of solid union between segments, compensatory tooth movement, anterior openbite, etc. have been cited as the side effects of jaw displacement. The purpose of this study was to evaluate the skeletal relapse and dental change during IMF. The material consisted of 28 patients who were treated by BSSRO(bilateral sagittal split ramus osteotomy), wire osteosynthesis, IMF for correction of mandibular prognathism. Through cephalometric analysis, the amount and direction of surgical movement, skeletal relapse and dental change during IMF were measured. The correlation between surgical movement and skeletal relapse, between skeletal relapse and dental changes were evaluated. The following conclusions were obtained; 1. Distal segment was repositioned backward and upward, proximal segment showed clockwise rotation during surgery. 2. During ]m, anterior portion of distal segment was displaced backward and posterior portion was displaced upward. Proximal segment was displaced upward with forward movement of p-Go(gonion of proximal segment). Backward surgical movement of p-GO was significantly correlated with forward displacement of p-Go. 3. Overjet and overbite were not changed during IMF. The compensatory tooth movements during IMF were characterized by retroclination of upper incisors md retroclination, extrusion of lower incisors. These compensatory tooth movements had statistically significant correlation with upward displacement of d-Go (gonion of distal segment).

  • PDF

Transfer of Isolated Mitochondria to Bovine Oocytes by Microinjection (미세주입을 이용한 난자로의 분리된 미토콘드리아 전달)

  • Baek, Sang-Ki;Byun, June-Ho;Kim, Bo Gyu;Lee, A ram;Cho, Young-Soo;Kim, Ik-Sung;Seo, Gang-Mi;Chung, Se-Kyo;Lee, Joon-Hee;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1445-1451
    • /
    • 2017
  • Mitochondria play a central role in energy generation by using electron transport coupled with oxidative phosphorylation. They also participate in other important cellular functions including metabolism, apoptosis, signaling, and reactive oxygen species production. Therefore, mitochondrial dysfunction is known to contribute to a variety of human diseases. Furthermore, there are various inherited diseases of energy metabolism due to mitochondrial DNA (mtDNA) mutations. Unfortunately, therapeutic options for these inherited mtDNA diseases are extremely limited. In this regard, mitochondrial replacement techniques are taking on increased importance in developing a clinical approach to inherited mtDNA diseases. In this study, green fluorescence protein (GFP)-tagged mitochondria were isolated by differential centrifugation from a mammalian cell line. Using microinjection technique, the isolated GFP-tagged mitochondria were then transferred to bovine oocytes that were triggered for early development. During the early developmental period from bovine oocytes to blastocysts, the transferred mitochondria were observed using fluorescent microscopy. The microinjected mitochondria were dispersed rapidly into the cytoplasm of oocytes and were passed down to subsequent cells of 2-cell, 4-cell, 8-cell, morula, and blastocyst stages. Together, these results demonstrate a successful in vitro transfer of isolated mitochondria to oocytes and provide a model for mitochondrial replacement implicated in inherited mtDNA diseases and animal cloning.