• 제목/요약/키워드: Optoelectronic oscillator (OEO)

검색결과 5건 처리시간 0.02초

A Frequency Stable and Tunable Optoelectronic Oscillator Using an Optical Phase Shifter and a Phase-shifted Fiber Bragg Grating

  • Wu, Zekun;Zhang, Jiahong;Wang, Yao
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.634-641
    • /
    • 2022
  • A frequency stable and tunable optoelectronic oscillator (OEO) incorporating an optical phase shifter and a phase-shifted fiber Bragg grating (PS-FBG) is designed and analyzed. The frequency tunability of the OEO can be realized by using a tunable microwave photonic bandpass filter consisting of a PS-FBG, a phase modulator. The optical phase compensation loop is used to compensate for the phase variations of the RF signal from the OEO by adjusting an optical phase shifter. Simulation results demonstrate that the output RF signals of the OEO can be tuned in a frequency range of 118 MHz to 24.092 GHz. When the ambient temperature fluctuates within ±3.9 ℃, the frequency drifts of the output RF signals are less than 68 Hz, the side-mode suppression ratios are more than 69.39 dB, and the phase noise is less than -92.49 dBc/Hz at a 10 kHz offset frequency.

Dual Loop Optoelectronic Oscillator with Acousto-Optic Delay Line

  • Kim, Tae Hyun;Lee, Sangkyung;Lee, Chang Hwa;Yim, Sin Hyuk
    • Journal of the Optical Society of Korea
    • /
    • 제20권2호
    • /
    • pp.300-304
    • /
    • 2016
  • A dual loop optoelectronic oscillator (OEO) based on an acousto-optic modulator (AOM) for single mode operation with an acousto-optic delay line is demonstrated in this paper. When the OEO operates, the free spectral range is a function of the total loop length of the OEO, which is mainly dependent on the propagation time of the acoustic wave in the AOM. Due to the huge difference in the magnitude between the speed of light and the acoustic velocity in the AOM, the effective loop length converted to light-propagation length of the OEO increases to 3.8 km. With 150 MHz oscillation frequency, phase noise of -118 dBc/Hz at 10 kHz frequency offset, and -140 dBc/Hz at 200 kHz frequency offset, is achieved.

레이저 직접 변조를 이용한 광전 발진기의 성능 분석 (Performance Analysis of the Optoelectronic Oscillator using the Direct Modulation Laser)

  • 조준형;허서원;성혁기
    • 한국정보통신학회논문지
    • /
    • 제18권8호
    • /
    • pp.2029-2036
    • /
    • 2014
  • 본 논문에서는 반도체 레이저의 직접 변조를 이용한 광전 발진기의 성능에 대한 이론적인 해석을 수행하였다. 먼저 광전 발진기를 구성 하는 각 부분의 응답 특성을 해석 하고, 이를 이용하여 광전 발진기 전체의 개방 루프 응답 특성을 얻었다. 다음으로 개방 루프 응답 특성의 크기 응답과 위상 응답 해석 결과에 루프 발진기의 발진 원리를 적용하여 광전 발진기의 발진 주파수, 스퓨리어스 톤의 간격, 위상 잡음의 성능을 도출하였다.

Tunable Low Phase-noise Microwave Generation Utilizing an Optoelectronic Oscillator and a Fiber Bragg Grating

  • Zhuansun, Xiaobo;Chen, Yiwang;Zhang, Pin;Yin, Qin;Ni, Jiazheng;Dong, Xiaohua
    • Current Optics and Photonics
    • /
    • 제2권1호
    • /
    • pp.96-100
    • /
    • 2018
  • A tunable low-phase-noise microwave generation structure that utilizes an optoelectronic oscillator (OEO) and a fiber Bragg grating (FBG) is proposed and experimentally demonstrated in this article. This structure has no particular requirement for the band width of the laser, and its tunability is realized through adjusting the central frequency of the tunable FBG. A detailed theoretical analysis is established and confirmed via an experiment. A high-purity microwave signal with a frequency tunable from 6 to 12 GHz is generated. The single-sideband phase noise of the generated signal at 10.2 GHz is -117.2 dBc/Hz, at a frequency offset of 10 kHz.

A Novel High Speed Frequency Sweeping Signal Generator in X-band Based on Tunable Optoelectronic Oscillator

  • Sun, Mingming;Chen, Han;Sun, Xiaohan
    • Current Optics and Photonics
    • /
    • 제2권1호
    • /
    • pp.53-58
    • /
    • 2018
  • A novel X-band high speed frequency sweep signal generator based on a tunable optoelectronic oscillator (OEO) incorporating a frequency-swept laser is presented and the theoretical fundamentals of the design are explained. A prototype of the generator with tuning range from 8.8552 GHz to 10.3992 GHz and a fine step about 8 MHz is achieved. The generated radiofrequency signal with a single sideband (SSB) phase noise lower than -100 dBc/Hz@10KHz is experimentally demonstrated within the whole tunable range, without any narrow RF band-pass filters in the loop. And the tuning speed of the frequency sweep signal generator can reach to over 1 GHz/s benefiting from applying a novel dispersion compensation modular instead of several tens of kilometers of optical fiber delay line in the system.