• Title/Summary/Keyword: Opto-electronic device

Search Result 31, Processing Time 0.03 seconds

Stage System for LCD Exposure Equipment Using Touch-type Displacement Sensor (접촉형 변위센서를 이용한 LCD노광기용 스테이지 시스템)

  • Yim, Kwang-Kuk;Seo, Hwa-Il;Cho, Hyun-Chan;Kim, Kwang-Sun;Kang, Heung-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.7-10
    • /
    • 2007
  • In an effort to reduce weaknesses of existing laser displacement sensor-based system, a sensing device for distance and balance of mask-substrate gap using touch-type displacement sensor was suggested. The device suggested in this study is expected to solve the problems of prices and reflections, by means of a touch-type sensor. LCD exposure equipment stage system including suggested sensing device was realized to assess the characteristics of sensing the balance and gap between mask and substrate. It was verified that a touch-type displacement sensor-based device to adjust the balance and distance of mask-substrate gap suggested in this study can be applicable to LCD expose equipment in practice.

  • PDF

A Study on Hand Speed Constant to Calculate Safe Distance of Press Protective Device (프레스 방호장치 안전거리 산정을 위한 손속도상수)

  • Lee, Keun-Oh;Kim, Jong-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.40-46
    • /
    • 2010
  • To protect press operator from the after-reach hazard, current Ministry of Labor Notification(MOLN) requires the use of a formula for calculating the safe distance away from the point of operation for locating press protective devices, Two Hand Control Devices(THCD) and Active Opto-Electronic Protective Devices(AOPD), on a power press. This formula is based on a same hand speed constant of 160cm/s. While EN standards use different hand speed constant for THCD and AOPD respectively. The objective of this study is to compare two guidelines on the hand speed constant published by MOLN and EN 692, also to propose a proper hand speed constant and validate it experimentally. As a experimental result, it could be known that hand speed constant of Ministry of Labor Notification should be improved as that of EN standards.

Efficient Organic Light-emitting Diodes by Insertion a Thin Lithium Fluoride Layer with Conventional Structure

  • Kim, Young-Min;Park, Young-Wook;Choi, Jin-Hwan;Kim, Jai-Kyeong;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.26-30
    • /
    • 2006
  • Insertion of a thin lithium fluoride (TLF) layer between an emitting layer (EML) and an electron transporting layer has resumed in the developement of a highly efficient and bright organic light-emitting diode (OLED). Comparing with the performance of the device as a function of position with the TLF layer in tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$, we propose the optimal position for the TLF layer in the stacked structure. The fabricated OLED shows a luminance efficiency of more than 20 cd/A, a power efficiency of 12 Im/W (at 20 mA/$cm^{2}$), and a luminance of more than 22 000 cd/$m^{2}$ (at 100 mA/$cm^{2}$), respectively. We suggest that the enhanced performance of the OLED is probably attributed to the improvement of carrier balance to achieve a high level of recombination efficiency in an EML.

An Analysis of Design Elements of Silicon Avalanche LED (실리콘 애벌런치 LED의 설계요소에 대한 분석)

  • Ea, Jung-Yang
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.116-126
    • /
    • 2009
  • It is becoming more difficult to improve the device operating speed by shrinking the size of semiconductor devices. Therefore, for a new leap forward in the semiconductor industry, the advent of silicon opto-electronic devices, i.e., silicon photonics is more desperate. Silicon Avalanche LED is one of the prospective candidates to realize the practical silicon opto-electronic devices due to its simplicity of fabrication, repeatability, stability, high speed operation, and compatibility with silicon IC processing. We conducted the measurement of the electrical characteristics and the observation of the light-emitting phenomena using optical microscopy. We analyzed the influence of the design elements such as the shape of the light-emitting area and the depth of the $n^{+}-p^{+}$ junction with simple device modeling and simulation. We compared the results of simulation and the measurement and explained the discrepancy between the results of the simulation and the measurement, and the suggestions for the improvement were given.

Opticla Angle Sensor Using Pseudorandom-code And Geometry-code (슈도 랜덤 코드와 기하학 코드를 이용한 광학적 Angle Sensor)

  • 김희성;도규봉
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • Absolute optical angle sensor is described that is an essentially digital opto-electronic device. Its purpose is to resolve the relative and absolute angle position of coded disk using Pseudorandom-code and Geometry-code. In this technique, the angular position of disk is determined in coarse sense first by Pseudorandom-code. A further fine angular position data based on Pixel count is obtained by Geometry-code which result 0.006$^{\circ}$ resolution of the system provided that 7 ${\mu}{\textrm}{m}$ line image sensor are used. The proposed technique is novel in a number of aspects, such that it has the non-contact reflective nature, high resolution of the system, relatively simple code pattern, and inherent digital nature of the sensor. And what is more the system can be easily modified to torque sensor by applying two coded disks in a manner that observe the difference in absolute angular displacement. The digital opto-electronic nature of the proposed sensor, along with its reporting of both torque and angle, makes the system ideal for use in intelligent vehicle systems. In this communication, we propose a technique that utilizes Pseudorandom-code and Geometry-code to determine accurate angular position of coded disk. We present the experimental results to demonstrate the validity of the idea.

Electrical Properties and Reliability of the Photo-conductive CdS Thin Films for Flexible Opto-electronic Device Applications (유연성 광전도 CdS 박막의 증착조건에 따른 전기적 특성 및 신뢰성 평가 연구)

  • Hur, Sung-Gi;Cho, Hyun-Jin;Park, Kyoung-Woo;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1023-1027
    • /
    • 2009
  • Cadmium sulfide (CdS) thin film for flexible optical device applications were prepared at $H_2/(Ar+H_2)$ flow ratios on polyethersulfon (PES) flexible polymer substrates at room temperature by radio frequency magnetron sputtering technique. The CdS thin films deposited at room temperature showed a (002) preferred orientation and the smooth surface morphologies. Films deposited at a hydrogen flow ratio of 25% exhibited a photo- and dark-sheet resistance of about 50 and $2.7\;{\times}\;10^5\;{\Omega}/square$, respectively. From the result of the bending test, CdS films exhibit a strong adhesion with the PES polymer substrates and the $Al_2O_3$ passivation layer deposited on the CdS films only shows an increase of the resistance of 8.4% after exposure for 120 h in air atmosphere.

Polarizing Photovoltaic Polymer Films for Reflective Solar-LCDs (편광 흡수성 광기전성 고분자 박막 연구)

  • Kim, Young-Chan;Huh, Yoon-Ho;Park, Byoung-Choo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.525-530
    • /
    • 2012
  • We present the results of a study of the polarizing photovoltaic (PV) effects in an aligned polymer bulk heterojuction PV layer. The fairly uniform in-plane uniaxial alignment of the PV layer with a macroscopic axial orientational order parameter of 0.40 was achieved by means of a simple rubbing technique. Moreover, reflective polarizing PSCs having the aligned PV layers were applied to power-generating reflective type liquid crystal displays (LCDs), which exhibited a maximum contrast ratio of 1.7. These results form a promising foundation for various energy harvesting polarization dependent opto-electrical LCD device applications.

Eco-Friendly Light Emitting Diodes Based on Graphene Quantum Dots and III-V Colloidal Quantum Dots

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.65-65
    • /
    • 2015
  • In this talk, I will introduce two topics. The first topic is the polymer light emitting diodes (PLEDs) using graphene oxide quantum dots as emissive center. More specifically, the energy transfer mechanism as well as the origin of white electroluminescence in the PLED were investigated. The second topic is the facile synthesis of eco-friendly III-V colloidal quantum dots and their application to light emitting diodes. Polymer (organic) light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nanomaterial without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence (EL) from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. (Sci Rep., 5, 11032, 2015). New III-V colloidal quantum dots (CQDs) were synthesized using the hot-injection method and the QD-light emitting diodes (QLEDs) using these CQDs as emissive layer were demonstrated for the first time. The band gaps of the III-V CQDs were varied by varying the metal fraction and by particle size control. The X-ray absorption fine structure (XAFS) results show that the crystal states of the III-V CQDs consist of multi-phase states; multi-peak photoluminescence (PL) resulted from these multi-phase states. Inverted structured QLED shows green EL emission and a maximum luminance of ~45 cd/m2. This result shows that III-V CQDs can be a good substitute for conventional cadmium-containing CQDs in various opto-electronic applications, e.g., eco-friendly displays. (Un-published results).

  • PDF

Enhanced Light Outcoupling on Photo-luminescent Devices with Microcavity (Microcavity 적용 광자 발광 소자의 광 추출 향상 연구)

  • Lee, Han Byul;Lee, Eun Hye;Sung, Min Ho;Ryu, Si Hong;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.391-396
    • /
    • 2013
  • Recently, microcavity is studied to reduce the optical loss of BLU and OLED. In this paper, we suggest applying microcavity to photo-luminescent lamp with plasma discharge technology to meet the display applications for a BLU for LCD. The structure of photo-luminescent lamp consists of SUS foil and ITO glass with microcavity. The opto-electric characteristics of photo-luminescent lamp with microcavity was evaluated. The brightness of photo-luminescent device was increased over $111cd/m^2$ with the adaptation of patterned microcavity at $30{\mu}m$. The 3D optical simulation verified the enhanced light outcoupling when microcavity applied to the device.