• Title/Summary/Keyword: Optionally Piloted Personal Air Vehicle

Search Result 3, Processing Time 0.017 seconds

Structural Sizing for Optionally Piloted PAV Preliminary Design (유무인 겸용 개인항공기(OPPAV) 개념설계를 위한 구조물 사이징)

  • Kim, Sung Joon;Lee, Seung-gyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.83-89
    • /
    • 2020
  • Personal air vehicle (PAV) is considered by aviation engineers as a solution to provide fast urban mobility. The purpose of designing a optionally piloted PAV (OPPAV) is to provide an individual air vehicle. The airframe structure is designed with high strength carbon fiber composite to reduce the aircraft weight. This paper presents an overview of sizing process for OPPAV at the conceptual design level. It consists of load analysis, structural sizing and development of efficient design allowable values for composite material. The weight is estimated based on sizing process, including strength and stiffness requirements. The objective of this study is to present a overview of structural sizing procedure and fast tool for preliminary design phases.

Equivalent Model Dynamic Analysis of Main Wing Assembly for Optionally Piloted Personal Air Vehicle (자율비행 개인항공기용 주익 조립체 등가모델 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Jun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • In this study, as part of the development of an autonomous flying personal aircraft, an equivalent model of the main wing assembly of an Optionally Piloted Personal Air Vehicle (OPPAV) was developed. Reliability of the developed equivalent model was verified by eigenvalue analysis. The main wing assembly consisted of a main wing, an inboard pod, and an outboard pod. First, for developing an equivalent model of each component, components to produce the equivalent model were divided into several sections. Nodes were then created on the axis of the equivalent model at both ends of each section. In addition, static analysis with unit force and unit moment was performed to calculate the deformation or the amount of rotation at the node to be used in the equivalent model. Equivalent axial, bending, and torsional stiffness of each section were calculated by applying the beam theory. Once the equivalent stiffness of each section was calculated, information of a mass and moment of inertia for each section was entered by creating a lumped mass in the center of each section. An equivalent model was developed using beam element. Finally, the reliability of the developed equivalent model was verified by comparison with results of mode analysis of the fine model.

Development of Mission Analysis Tool for eVTOL Aircrafts of Lift-Tilt Concept (Lift-Tilt 개념의 eVTOL 항공기 임무 분석 도구 개발)

  • Paek, Seung-Kil;Chae, Sanghyun;Kang, Hee Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.859-870
    • /
    • 2021
  • KARI (Korea Aerospace Research Institute) is developing a design framework for the concept and preliminary design of eVTOL aircrafts. A low fidelity mission analysis tool was developed for the eVTOL aircrafts of Lift-Tilt Concept, which have tilt propellers and lift propellers, using open source SUAVE package. For its development, a review for the propeller performance analysis functionality was made. To find the trim solution at each mission segment automatically, an algorithm is implemented, using a global optimization technique through parallel processings and DOE(design of experiment). Using the tool, the one seated eVTOL OPPAV(optionally piloted personal air vehicle) was modeled and evaluated, which results were compared with the preliminary design data.