• Title/Summary/Keyword: Optimum-adaptive

Search Result 238, Processing Time 0.025 seconds

An Evaluation of Multiple-input Dual-output Run-to-Run Control Scheme for Semiconductor Manufacturing

  • Fan, Shu-Kai-S.;Lin, Yen
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.54-67
    • /
    • 2005
  • This paper provides an evaluation of an optimization-based, multiple-input double-output (MIDO) run-to-run (R2R) control scheme for general semiconductor manufacturing processes. The controller in this research, termed adaptive dual response optimizing controller (ADROC), can serve as a process optimizer as well as a recipe regulator between consecutive runs of wafer fabrication. In evaluation, it is assumed that the equipment model could be appropriately described by a pair of second-order polynomial functions in terms of a set of controllable variables. Of practical relevance is to consider a drifting effect in the equipment model since in common semiconductor practice the process tends to drift due to machine aging and tool wearing. We select a typical application of R2R control to chemical mechanical planarization (CMP) in semiconductor manufacturing in this evaluation, and there are five different CMP process scenarios demonstrated, including mean shift, variance increase, and IMA disturbances. For the controller, ADROC, an on-line estimation technique is implemented in a self-tuning (ST) control manner for the adaptation purpose. Subsequently, an ad hoc global optimization algorithm based on the dual response approach, arising from the response surface methodology (RSM) literature, is used to seek the optimum recipe within the acceptability region for the execution of next run. The main components of ADROC are described and its control performance is assessed. It reveals from the evaluation that ADROC can provide excellent control actions for the MIDO R2R situations even though the process exhibits complicated, nonlinear interaction effects between control variables, and the drifting disturbances.

Robust Object Tracking based on Weight Control in Particle Swarm Optimization (파티클 스웜 최적화에서의 가중치 조절에 기반한 강인한 객체 추적 알고리즘)

  • Kang, Kyuchang;Bae, Changseok;Chung, Yuk Ying
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.15-29
    • /
    • 2018
  • This paper proposes an enhanced object tracking algorithm to compensate the lack of temporal information in existing particle swarm optimization based object trackers using the trajectory of the target object. The proposed scheme also enables the tracking and documentation of the location of an online updated set of distractions. Based on the trajectories information and the distraction set, a rule based approach with adaptive parameters is utilized for occlusion detection and determination of the target position. Compare to existing algorithms, the proposed approach provides more comprehensive use of available information and does not require manual adjustment of threshold values. Moreover, an effective weight adjustment function is proposed to alleviate the diversity loss and pre-mature convergence problem in particle swarm optimization. The proposed weight function ensures particles to search thoroughly in the frame before convergence to an optimum solution. In the existence of multiple objects with similar feature composition, this algorithm is tested to significantly reduce convergence to nearby distractions compared to the other existing swarm intelligence based object trackers.

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

Effects of Dissolved Oxygen Level on Avermectin $B_{1a}$ Production by Streptomyces avermitilis in Computer-Controlled Bioreactor Cultures

  • Song, Sung-Ki;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1690-1698
    • /
    • 2006
  • In order to investigate the effect of dissolved oxygen (DO) level on AVM $B_{1a}$ production by a high yielding mutant of Streptomyces avermitilis, five sets of bioreactor cultures were performed under variously controlled DO levels. Using an online computer control system, the agitation speed and aeration rate were automatically controlled in an adaptive manner, responding timely to the oxygen requirement of the producer microorganism. In the two cultures of DO limitation, the onset of AVM $B_{1a}$ biosynthesis was observed to casually coincide with the fermentation time when oxygen-limited conditions were overcome by the producing microorganism. In contrast, this phenomenon did not occur in the parallel fermentations with DO levels controlled at around 30% and 40% throughout the entire fermentation period, showing an almost growth-associated mode of AVM $B_{1a}$ production: AVM $B_{1a}$ biosynthesis under the environments of high DO levels started much earlier than the corresponding oxygen-limited cultures, leading to a significant enhancement of AVM $B_{1a}$ production during the exponential stage. Consequently, approximately 6-fold and 9-fold increases in the final AVM $B_{1a}$ production were obtained in 30% and 40% DO-controlled fermentations, respectively, especially when compared with the culture of severe DO limitation (the culture with 0% DO level during the exponential phase). The production yield ($Y_{p/x}$), volumetric production rate (Qp), and specific production rate (${\bar{q}}_p$) of the 40% DO-controlled culture were observed to be 14%, 15%, and 15% higher, respectively, than those of the parallel cultures that were performed under an excessive agitation speed (350 rpm) and aeration rate (1 vvm) to maintain sufficiently high DO levels throughout the entire fermentation period. These results suggest that high shear damage of the high-yielding strain due to an excessive agitation speed is the primary reason for the reduction of the AVM $B_{1a}$ biosynthetic capability of the producer. As for the cell growth, exponential growth patterns during the initial 3 days were observed in the fermentations of sufficient DO levels, whereas almost linear patterns of cell growth were observed in the other two cultures of DO limitation during the identical period, resulting in apparently lower amounts of DCW. These results led us to conclude that maintenance of optimum DO levels, but not too high to cause potential shear damage on the producer, was crucial not only for the cell growth, but also for the enhanced production of AVM $B_{1a}$ by the filamentous mycelial cells of Streptomyces avermitilis.

Image segmentation using fuzzy worm searching and adaptive MIN-MAX clustering based on genetic algorithm (유전 알고리즘에 기반한 퍼지 벌레 검색과 자율 적응 최소-최대 군집화를 이용한 영상 영역화)

  • Ha, Seong-Wook;Kang, Dae-Seong;Kim, Dai-Jin
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.109-120
    • /
    • 1998
  • An image segmentation approach based on the fuzzy worm searching and MIN-MAX clustering algorithm is proposed in this paper. This algorithm deals with fuzzy worm value and min-max node at a gross scene level, which investigates the edge information including fuzzy worm action and spatial relationship of the pixels as the parameters of its objective function. But the conventional segmentation methods for edge extraction generally need the mask information for the algebraic model, and take long run times at mask operation, whereas the proposed algorithm has single operation according to active searching of fuzzy worms. In addition, we also propose both genetic fuzzy worm searching and genetic min-max clustering using genetic algorithm to complete clustering and fuzzy searching on grey-histogram of image for the optimum solution, which can automatically determine the size of ranges and has both strong robust and speedy calculation. The simulation results showed that the proposed algorithm adaptively divided the quantized images in histogram region and performed single searching methods, significantly alleviating the increase of the computational load and the memory requirements.

  • PDF

Joint Optimization of the Motion Estimation Module and the Up/Down Scaler in Transcoders television (트랜스코더의 해상도 변환 모듈과 움직임 추정 모듈의 공동 최적화)

  • Han, Jong-Ki;Kwak, Sang-Min;Jun, Dong-San;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.270-285
    • /
    • 2005
  • A joint design scheme is proposed to optimize the up/down scaler and the motion vector estimation module in the transcoder system. The proposed scheme first optimizes the resolution scaler for a fixed motion vector, and then a new motion vector is estimated for the fixed scaler. These two steps are iteratively repeated until they reach a local optimum solution. In the optimization of the scaler, we derive an adaptive version of a cubic convolution interpolator to enlarge or reduce digital images by arbitrary scaling factors. The adaptation is performed at each macroblock of an image. In order to estimate the optimal motion vector, a temporary motion vector is composed from the given motion vectors. Then the motion vector is refined over a narrow search range. It is well-known that this refinement scheme provides the comparable performance compared to the full search method. Simulation results show that a jointly optimized system based on the proposed algorithms outperforms the conventional systems. We can also see that the algorithms exhibit significant improvement in the minimization of information loss compared with other techniques.

Performance Analysis of the Channel Equalizers for Partial Response Channels (부분 응답 채널을 위한 채널 등화기들의 성능 분석에 관한 연구)

  • Lee, Sang-Kyung;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.739-752
    • /
    • 2002
  • Recently, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed data transmission and high-density digital recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCR's and digital versatile recordable disks and so on. This paper is concerned with adaptive equalization of partial response channels particularly for the magnetic recording channels. Specifically we study how the PR channel equalizers work for different choices of desired or reference signals used for adjusting the equalizer weights. In doing so, we consider three different configurations that are actually implemented in the commercial products mentioned above. First of all, we show how to compute the theoretical values of the optimum Wiener solutions derived by minimizing the mean-squared error (MSE) at the equalizer output. Noting that this equalizer MSE measure cannot be used to fairly compare the three configurations, we propose to use the data MSE that is computer just before the final detector for the underlying PR system. We also express the data MSE in terms of the channel impulse response values, source data power and additive noise power, thereby making it possible to compare the performance of the configurations under study. The results of extensive computer simulation indicate that our theoretical derivation is correct with high precision. Comparing the three configurations, it also turns out that one of the three configurations needs to be further improved in performance although it has an apparent advantage over the others in terms of memory size when implemented using RAM's for the decision feedback part.

Estimation of the Marginal Walking Time of Bus Users in Small-Medium Cities (중·소도시 버스이용자의 한계도보시간 추정)

  • Kim, Kyung Whan;Yoo, Hwan Hee;Lee, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.451-457
    • /
    • 2008
  • Establishing realistic bus service coverage is needed to build optimum city bus line networks and reasonable bus service coverage areas. The purposes of this study are understanding the characteristics of the present walking time and marginal walking time of small-medium cities and constructing an ANFIS (Adaptive Neuro-Fuzzy Inference System) model to estimate the marginal walking time for certain age and income. The cities of Masan, Chongwon and Jinju are selected for study cities. The 80 percentile of present walking time of bus users of these cities are 10.2-11.1 minutes, thus the values are greater than the 5 minutes of the maximum walking time in USA and the marginal walking times of 21.1-21.8 minutes are much greater. An ANFIS model based on pulled data of the cities are constructed to estimate the marginal walking time of small-medium cities. Analyzing the relationship between marginal walking time and age/income by using the model, the marginal walking time decreases as the age increases, but is near constant from the age of 25 to 35. And the marginal walking time is inversely proportional to the income. In comparing the surveyed and the estimated values, as the statistics of coefficient of determination, MSE and MAE are 0.996, 0.163, 0.333 respectively, it may be judged that the explainability of the model is very high. The technique developed in this study can be applied to other cities.