Browse > Article

Effects of Dissolved Oxygen Level on Avermectin $B_{1a}$ Production by Streptomyces avermitilis in Computer-Controlled Bioreactor Cultures  

Song, Sung-Ki (Department of Molecular Bioscience, Kangwon National University)
Jeong, Yong-Seob (Faculty of Biotechnology, Chonbuk National University)
Kim, Pyeung-Hyeun (Department of Molecular Bioscience, Kangwon National University)
Chun, Gie-Taek (Department of Molecular Bioscience, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.11, 2006 , pp. 1690-1698 More about this Journal
Abstract
In order to investigate the effect of dissolved oxygen (DO) level on AVM $B_{1a}$ production by a high yielding mutant of Streptomyces avermitilis, five sets of bioreactor cultures were performed under variously controlled DO levels. Using an online computer control system, the agitation speed and aeration rate were automatically controlled in an adaptive manner, responding timely to the oxygen requirement of the producer microorganism. In the two cultures of DO limitation, the onset of AVM $B_{1a}$ biosynthesis was observed to casually coincide with the fermentation time when oxygen-limited conditions were overcome by the producing microorganism. In contrast, this phenomenon did not occur in the parallel fermentations with DO levels controlled at around 30% and 40% throughout the entire fermentation period, showing an almost growth-associated mode of AVM $B_{1a}$ production: AVM $B_{1a}$ biosynthesis under the environments of high DO levels started much earlier than the corresponding oxygen-limited cultures, leading to a significant enhancement of AVM $B_{1a}$ production during the exponential stage. Consequently, approximately 6-fold and 9-fold increases in the final AVM $B_{1a}$ production were obtained in 30% and 40% DO-controlled fermentations, respectively, especially when compared with the culture of severe DO limitation (the culture with 0% DO level during the exponential phase). The production yield ($Y_{p/x}$), volumetric production rate (Qp), and specific production rate (${\bar{q}}_p$) of the 40% DO-controlled culture were observed to be 14%, 15%, and 15% higher, respectively, than those of the parallel cultures that were performed under an excessive agitation speed (350 rpm) and aeration rate (1 vvm) to maintain sufficiently high DO levels throughout the entire fermentation period. These results suggest that high shear damage of the high-yielding strain due to an excessive agitation speed is the primary reason for the reduction of the AVM $B_{1a}$ biosynthetic capability of the producer. As for the cell growth, exponential growth patterns during the initial 3 days were observed in the fermentations of sufficient DO levels, whereas almost linear patterns of cell growth were observed in the other two cultures of DO limitation during the identical period, resulting in apparently lower amounts of DCW. These results led us to conclude that maintenance of optimum DO levels, but not too high to cause potential shear damage on the producer, was crucial not only for the cell growth, but also for the enhanced production of AVM $B_{1a}$ by the filamentous mycelial cells of Streptomyces avermitilis.
Keywords
Streptomyces avermitilis; avermectin $B_{1a}$; dissolved oxygen; computer-controlled fermentation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Brunker, P., W. Minas, P. T. Kallio, and J. E. Bailey. 1998. Genetic engineering of an industrial strain of Saccaropolyspora erythraea for stable expression of the Vitreoscilla haemoglobin gene (VHb). Microbiology 144: 2441-2448   DOI   ScienceOn
2 Dick, O., U. Onken, I. Sattler, and A. Zeeck. 1994. Influence of increased dissolved oxygen concentration on productivity and selectivity in cultures of a colabomycin-producing strain of Streptomyces griseoflavus. Appl. Microbiol. Biotechnol. 41: 373-377
3 Hilgendorf, P., V. Heiser, H. Diekmann, and M. Thoma. 1987. Constant dissolved oxygen concentrations in cephalosporin C fermentation: Applicability of different controllers and effect on fermentation parameters. Appl. Microbiol. Biotechnol. 27: 247-251
4 Justen, P., G. C. Paul, A. W. Nienow, and C. R. Thomas. 1996. Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol. Bioeng. 52: 672-684   DOI   ScienceOn
5 Kim, C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092
6 Kohler, P. 2001. The biochemical basis of anthelmintic action and resistance. Int. J. Parasitol. 31: 336-345   DOI   ScienceOn
7 Robin, J., S. Bonneau, D. Schipper, H. Noorman, and J. Nielsen. 2003. Influence of the adipate and dissolved oxygen concentrations on the ${\beta}$-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus. Metab. Eng. 5: 42-48   DOI   ScienceOn
8 Rollins, M. J., S. E. Jensen, and D. W. S. Westlake. 1988. Effect of aeration on antibiotic production by Streptomyces clavuligerus. J. Ind. Microbiol. 3: 357-364   DOI
9 Roubos, J. A., P. Krabben, R. G. M. Luiten, H. B. Verbruggen, and J. J. Heijnen. 2001. A quantitative approach to characterizing cell lysis caused by mechanical agitation of Streptomyces clavuligerus. Biotechnol. Prog. 17: 336-347   DOI   ScienceOn
10 van Sujidam, J. C. and B. Metz. 1981. Influence of engineering variables upon the morphology of filamentous molds. Biotechnol. Bioeng. 23: 111-148   DOI
11 Yoon, Y. J., E. S. Kim, Y. S. Hwang, and C. Y. Choi. 2004. Avermectin: Biochemical and molecular basis of its biosynthesis and regulation. Appl. Microbiol. Biotechnol. 63: 626-634   DOI
12 Ikeda, H., T. Nonomiya, and S. Omura. 2001. Organization of biosynthetic gene cluster for avermectin in Streptomyces avermitilis: Analysis of enzymatic domains in four polyketide synthases. J. Ind. Microbiol. Biotechnol. 27: 170-176   DOI
13 Chen, S. T., O. D. Hensens, and M. D. Schulman. 1989. Biosynthesis, pp. 55-72. In W. C. Campbell (ed.), Ivermectin and Abamectin. Springer-Verlag, New York
14 Magnolo, S. K., D. L. Leenutaphong, J. A. DeModena, J. E. Curtis, J. E. Bailey, J. L. Galazzo, and D. E. Hughes. 1991. Actinorhodin production by Streptomyces coelicolor and growth of Streptomyces lividans are improved by the expression of a bacterial hemoglobin. Biotechnology (NY) 9: 173-176   DOI   ScienceOn
15 Gbewonyo, K., D. Dimasi, and B. C. Buckland. 1987. Characterization of oxygen transfer and power absorption of hydrofoil impellers in viscous mycelial fermentations, pp. 128-234. In C. S. Ho and J. Y. Oldshue (eds.), Biotechnology Processes Scale-Up and Mixing. American Institute of Chemical Engineers, New York
16 Pfefferle, C., U. Theobald, H. Gurtler, and H. P. Fiedler. 2000. Improved secondary metabolite production in the genus Streptosporangium by optimization of the fermentation conditions. J. Biotechnol. 80: 135-142   DOI   ScienceOn
17 Rollins, M. J., S. E. Jensen, and D. W. S. Westlake. 1989. Regulation of antibiotic production by iron and oxygen during defined medium fermentations of Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 31: 390-396
18 Malik, V. S. 1980. Microbial secondary metabolism. Trends. Biochem. Sci. 5: 68-72   DOI   ScienceOn
19 Campbell, W. C., M. H. Fisher, E. O. Stapley, G. Albers-Schonberg, and T. A. Jacob. 1983. Ivermectin: A potent new antiparasitic agent. Science 221: 823-828   DOI
20 DeTilly, G., D. G. Mou, and C. L. Cooney. 1983. Optimization and economics of antibiotic production, pp. 190-209. In J. E. Smith, D. R. Berry, and B. Kristiansen (eds.), The Filamentous Fungi, vol. 4. Edward Arnold, London
21 Kaiser, D., U. Onken, I. Sattler, and A. Zeeck. 1994. Influence of increased dissolved oxygen concentration on the formation of secondary metabolites by manumycin-producing Streptomyces parvulus. Appl. Microbiol. Biotechnol. 41: 309-312   DOI
22 Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim. 2005. Doxorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66-71   과학기술학회마을
23 Yegneswaran, P. K. and M. R. Gray. 1988. Effect of reduced oxygen on growth and antibiotic production in Streptomyces clavuligerus. Biotechnol. Lett. 10: 479-484   DOI
24 Enfors, S. O. and B. Mattiasson. 1983. Oxygenation of processes involving immobilized cells, pp. 41-60. In B. Mattiasson (ed.), Immobilized Cells and Organelles, vol. 2. CRC Press, Boca Raton, FL
25 Steel, M. R. and W. E. Maxon. 1966. Dissolved oxygen measurements in pilot- and production-scale novobiocin fermentations. Biotechnol. Bioeng. 8: 97-108   DOI
26 Song, S. K., Y. S. Jeong, and G. T. Chun. 2005. Development of avermectin $B_{1a}$ high-yielding mutants through rational screening strategy based on understanding of biosynthetic pathway of avermectin $B_{1a}$. Korean J. Biotechnol. Bioeng. 20: 471-477
27 Taguchi, H., T. Yoshida, Y. Tomita, and S. Teramoto. 1968. The effects of agitation on disruption of the mycelial pellets in stirred fermentors. J. Ferment. Technol. 10: 814-822
28 Doran, P. M. 1997. Bioprocess Engineering Principles, pp. 190-217. Academic Press, London