• Title/Summary/Keyword: Optimum value

Search Result 2,727, Processing Time 0.031 seconds

A Paradox in an Indefinite Quadratic Transportation Problem

  • Arora, S.R.;Khurana, Archana
    • Management Science and Financial Engineering
    • /
    • v.7 no.2
    • /
    • pp.13-30
    • /
    • 2001
  • This paper discusses a paradox in an Indefinite Quadratic transportation Problem. Here, the objective function is the product of two linear functions. A paradox arises when the transportation problem admits of a total cost which is lower than the optimum cost, by transporting larger quantities of goods over the same route. A sufficient condition for the existence of a paradox is established. Paradoxical Range of flow is obtained for any given flow in which the corresponding objective function value is less than the optimum value of the given transportation problem. It is illustrated with the help of a numerical example.

  • PDF

Parameter Extraction for Optimum Design of Low Noise GaAs MESFET (저잡음 GaAs MESFET의 최적화 설계를 위한 파라미터 추출)

  • 이상배
    • Journal of the Korean Institute of Navigation
    • /
    • v.16 no.3
    • /
    • pp.65-76
    • /
    • 1992
  • An algorithm to determine the optimum nominal value of geometrical and material parameters in divice modelling is proposed. The algorithm uses the yield and variance prediction formula and Monte-Carlo analysis. The performance specification of the noise figure must also be satisfied. In this paper, the total number of considered devices is 1000, and each parameter of geometrical and material parameters is generated randomly within the limits of ${\pm}3%$ of nominal value, and the distribution of 1000 geometrical and material parameters is gaussing distribution.

  • PDF

The optimal design of electronic ballasts for triple-type compact fluorescent lamps considering variation of ambient temperatures (주위온도를 고려한 트리플형 콤팩트 형광램프용 전자식 안정기의 최적 설계)

  • Song, Sang-Bin;Gwark, Jae-Young;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.434-436
    • /
    • 1996
  • This paper investigates the optimal design of an electronic ballast of half bridge inverter type in consideration of the variation of ambient temperatures for a 15[W] triple-type compact fluorescent lamp. The performances of electronic ballasts under different values or the capacitance ratio in the resonant tank circuit are compared with each other in the practical temperature range between 15[$^{\circ}C$] and 35[$^{\circ}C$] to determine its optimum value. As a result, the optimum value is found to be such that $C_1/C_2=10$ at which value starting of the lamp is most stable and light output reaches its maximum value with lowest variation.

  • PDF

The Optimum Design according to System Variation of Impact Absorbing System for Spreader Considering Dynamic Characteristic (동특성을 고려한 스프레더용 충격흡수기의 시스템 변화에 따른 최적설계)

  • 안찬우;홍도관;김동영;한근조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.230-237
    • /
    • 2003
  • On this study, we operated the dynamic response for impact load of impact absorbing system for spreader by the finite element analysis and showed respectively the spring constant and the damping coefficient which the reaction force by impact was the lowest value for three types impact absorbing system according to the change of system, also we presented the change of impact reaction force according to the spring constant and the damping coefficient. Additionally, among the three types impact absorbing system according to the change of system, the reaction force of model II was the lowest value and the next model which has higher value than model II was model Iand model III has the highest value in the three types.

Approximate Optimum Thermal Design Analysis of Combined Cycle Power Plant (복합화력 발전플랜트의 근사 최적 열설계 해석)

  • Jeon, Y.J.;Shin, H.T.;Lee, B.R.;Kim, T.S.;Ro, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.782-787
    • /
    • 2001
  • An optimum thermal design analysis of the combined cycle power plant with triple pressure heat recovery steam generator was performed by the numerical simulation. The optimum design module used in the paper is DNCONF, a function of IMSL Library, which is widly known as a method to search for the local optimum. The objective function to be minimized is the cost of total power plant including the steam turbine power enhancement premium. The result of this paper shows that the cost reduces if the design point of power plant becomes the local optimum, and many calculations at various initial conditions should be carried out to get the value near the global optimum.

  • PDF

A Study of Ferrite Formation by Aerial Oxidation of Fe$(OH)_2$ Suspension of Aqueous Solution Containing Heave Metal Ions (水酸化鐵 懸濁液에서 空氣酸化에 의한 중금속이온의 Ferrite 생성에 관한 연구)

  • Lee, Sung Ho;Hyun, Yong Bum;Kim, Soo Saeng
    • Journal of Environmental Health Sciences
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 1986
  • This investigation was carried out on the study of Ferrite formation by aerial oxidation of Fe $(OH)_2$ suspension of aqueous solution containing heavy metal ions. In this study the optimum reactionary condition of the Ferrite formation in Batch reactor wa studied by aerial oxidation which are subjected to various reaction time and temperature, under the different kinds of R(2NaOH/$FeSO_4$) Values, pH, Air flow rate, and $Fe^2+/M^2+$ mole ratio. The optimum condition for the Ferrite formation in Batch reactor was such that residence Time was 90 min., Temperature $65{\circ}$C, pH 11.0, Air flow rate 2.0l/min and $Fe^{2+}/M^{2+}$ mole ratio 4.0, which was observed by X-Ray diffraction analysis. The relation R-value, pH and ORP affecting the formation of Ferrite is that the jump step in pH 11.0, when a amount of NaOH is added, is steady state to the formation of Ferrite. Effect of R-value of $FeSO_4$ and $FeCl_2$ on the formation of Ferrite in different from each other the optimum condition of the in different from each other the optimum condition of the $FeCl_2$ is R-value 0.7, pH 11.0 and the $FeSO_4$ R-value 1.2, pH 11.0.

  • PDF

Leakage Characteristic of Angled-Circumferential-Groove-Pump Seal with CFD Analysis (각이 진 평행 홈 펌프 실의 누설량 특성 해석)

  • Choi, Bok-Sung;Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • In order to improve leakage characteristic, angled-circumferential-groove pump seal is suggested. CFD analysis using FLUENT has been performed to predict leakage and determine an optimum slanted-groove angle $\alpha$ which yields the best leakage reduction. The optimum value of $\alpha$ ranges from $45^{\circ}$ to $60^{\circ}$ and depends on the pressure difference of seal and number of grooves for the same groove geometry. The maximum leakage reduction ratio increases as increasing the pressure difference of angled-circumferential-groove pump seal with the optimum value of $\alpha$.

Quality Characteristics of Sun-dried Salt and added with Cheongyang Hot Pepper (Capsicum annuum L.) Juice (청양고추 착즙액을 첨가한 천일염의 품질특성에 관한 연구)

  • Park, Hae Youn;Lee, Jong Pil
    • Culinary science and hospitality research
    • /
    • v.23 no.5
    • /
    • pp.87-91
    • /
    • 2017
  • This study was conducted to investigate the quality characteristics of sun-dried salt prepared with added Cheongyang hot pepper juice(CPJ). The moisture, crude protein, crude lipid, and crude ash contents of the CPJ were 84.36%, 2.27%, 1.41%, and 0.67% respectively. The moisture content, yellowness, capsaicin, and dihydrocapsaicin of sun-dried salt increased according to the level of added CPJ, whereas the NaCl, pH, lightness, and redness value increased. The sensory evaluation results showed that preferences for the sun-dried salt increased as CPJ, approached their optimum value and decreased as they exceeded optimum levels. Consequently, the proposed optimum level in the ingredient formulation for manufacture of the standard sun-dried salt was 30% CPJ, as based on analyses. Ultimately, this study was expected to contribute to the commercialization of sun-dried salt of high quality.

Robust Design of Composite Structure under Combined Loading of Bending and Torsion (굽힘-비틀림 복합하중을 받는 복합재료 구조물의 최적 강건 설계)

  • Yun, Ji-Yong;O, Gwang-Hwan;Nam, Hyeon-Uk;Han, Gyeong-Seop
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.211-214
    • /
    • 2005
  • This research studied robust design of composite structure under combined loading of bending and torsion. DOE (Design of Experiment) technique was used to find important design factors. The results show that the beam height, beam width, layer thickness and stack angle of outer-layer are important design parameter. The $2^{nd}$ DOE and RSM (Response Surface Model) were conducted to obtain optimum design. Multi-island genetic algorithm was used to optimum design. An approximate value of 6.65 mm in deflection was expected under optimum condition. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the sigma level reliability, the standard deviation of design parameter should be controlled within 2.5 % of average design value.

  • PDF

Optimum Design of A-Pillar Trim for Occupant Protection (승원 안전을 고려한 승용차 A-Pillar Trim의 최적 설계)

  • 김형곤;강신일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • NHTSA has been conducting biomechanical studies to reduce inujuries sustained sustained during automotive collision. Furthermore, NHTSA added the regulation to the FMVSS 201, limiting the equivalent HIC(Head Injury Criterion) value under 1000. In the presont work, a methodology was developed for the optimum design of the A-pillar trim with rib-structures. The design variables for the rib-strucrures were the transverse spacing, the longitudinal spacing, and the thickness. The required sets of the design varibles were decided based on the design of experiments. The head impact simulations were carried out using the LS-DYNA3D, and the HIC(d) values were computed using the resulrs of the head impact simulation. The objective function was constructed using the response surface methed (RSM). When the obtained optimum values were not inside the region of interest, the design proceduers were repeated by changing the region of interest. Finally, an A-pillar trim with rib-structures, which resulred in HIC(d) value under 850 for 15 mph head-trim impact, was developed.

  • PDF