• Title/Summary/Keyword: Optimum system

Search Result 5,281, Processing Time 0.036 seconds

Effects of Seeding Date and Polyethylene Film Mulching on the Yield Potential and Agronomic Characteristics of Proso Millet (Panicum miliaceum L.) in Miryang, Korea (밀양지역에서 기장의 파종시기 및 PE 피복이 생육 및 수량에 미치는 영향)

  • Hyun, Jong-Nae;Hwang, Jae-Bok;Ko, Jee-Yeon;Jung, Ki-Youl;Kim, Kyeong-Hoon;Kim, Kyeong-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.283-289
    • /
    • 2016
  • This study was carried out to identify the optimum seeding dates for selecting a double-cropping system and to assess the effect of polyethylene film mulching on the yield of Proso millet. Seeds of the varieties Hwanggeumgijang and Ibaegchal were sown in Miryang on five different dates: 1st (May 25), 2nd (June 15), 3rd (June 25), 4th (July 5), and 5th (July 15), with and without polyvinyl mulching. The varieties have different characteristics, for example, Hwanggeumgijang is an early-maturing type and more sensitive to temperature, whereas Ibaegchal is a medium-maturing type and more sensitive to the duration for which it is exposed to sunlight. Late-sown Hwanggeumgijang had a short heading date from seeding and required a low accumulated temperature. It also had a shorter period of heading, a shorter culm length and a shorter diameter of stem. In contrast, it had had a higher number of ears $per\;m^2$ although similar ear length and similar 1000-grain weight. The yield potential of Hwanggeumgijang was found to decrease at a late seeding date. In particular, it significantly decreased at the seeding date of July 15. In the case of cultivation with polyvinyl mulching, the period of heading was shorter by 2-4 days and the yield potential was increased by approximately 12-32%. The length and diameter of culm in Ibaegchal were slowly decreased, but the length of ear, the 1000-grain weight and the yield potential were similar for all seeding dates (except July 15) and cultivation with and without mulching. When sown late, the length and diameter of the culm of Ibaegchal very rapidly decreased by the July 15 seeding date. The protein content of Ibaegchal was higher but the amlyose content of Ibaechal was lower compared to Hwanggeumgijang. At late seeding dates, the protein contents of the two varieties increased but the amylose contents were similar.

Expression of Jun and p53 Genes from the Brain of Rats Irradiated with $^{60}Co{\gamma}$-ray (감마선 조사에 의한 뇌조직의 Jun 및 p53유전자 발현)

  • Kim Yong Seok;Woo Chong Kyu;Lee Yong Sung;Koh Jai Kyung;Chun Ha Chung;Lee Myung Za
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.265-279
    • /
    • 1996
  • Damage produced by radiation elicits a complex response in mammalian cells, including growth rate changes and the induction of a variety of genes associated with growth control and apoptosis. At doses of 10,000 cGy or greater, the exposed individual was killed in a matter of minutes to a couple of days, with symptoms consistent with pathology of the central nervous system(CNS) including degenerative changes. The nature of the damage in irradiated cells underlies the unique hazards of ionizing radiation. Radiation injury to CNS is a rare event in clinical medicine, but it is catastrophic for the patient in whom it occurs. The incidence of cerebral necrosis has been reported as high as 16% for doses greater than 6,000 cGy. In this study, the effect of radiation on brain tissue was studied in vivo. Jun and p53 genes in the rat brain were induced by whole body irradiation of rat with 600Co in doses between 1 Gy and 100 Gy and analyzed for expression of jun and p53 genes at the postirradiation time up to 6 hours. Northern analyses were done using 1.8 Kb & 0.8 Kb-pGEM-2-JUN/Eco RI/Pst I fragments, 2.0 Kb-php53B/Bam HI fragment and ,1.1 Kb-pBluescript SK--ACTIN/Eco RI fragment as the digoxigenin or [${\alpha}^{32}P$] dCTPlabeled probes for Jun, p53 and ${\beta}$-actin genes, respectively. Jun gene seemed to be expressed near the threshold levels in 1 hour after irradiation of $^{60}$Co in dose less than 1 Gy and was expressed in maximum at 1 hour after irradiation of $^{60}$Co in dose of 30 Gy. Jun was expressed increasingly with time until 5 or 6 hours after irradiation of $^{60}$Co in doses of 1 Gy and 10 Gy. After irradiation of $^{60}$Co in dose between 20 Gr and 100 Gy, the expression of Jun was however increased to peak in 2 hours and decreased thereafter. p53 gene in this study also seemed to be expressed near the threshold levels in 1 hour after irradiation of $^{60}$Co in dose less than 1 Gy and was expressed in maximum at 6 hours after irradiation of $^{60}$Co in dose of 1 Gy, p53 was expressed increasingly with time until 5 or 6 hours after irradiation of $^{60}$Co in dose between 1 Gy and 40 Gy. After irradiation of $^{60}$Co in doses of 50 Gy and 100 Gy, the expression of p53 was however increased to peak in 2 hours and decreased thereafter. The expression of Jun and p53 genes was not correlative in the brain tissue from rats. It seemed to be very important for the establishment of the optimum conditions for the animal studies relevant to the responses of genes inducible on DNA damage to ionizing radiation in mammalian cells. But there are many limitations to the animal studies such as the ununiform patterns of gene expression from the tissue because of its complex compositions. It is necessary to overcome the limitations for development of in situ Northern analysis.

  • PDF

Production of $[^{18}F]F_2$ Gas for Electrophilic Substitution Reaction (친전자성 치환반응을 위한 $[^{18}F]F_2$ Gas의 생산 연구)

  • Moon, Byung-Seok;Kim, Jae-Hong;Lee, Kyo-Chul;An, Gwang-Il;Cheon, Gi-Jeong;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.228-232
    • /
    • 2006
  • Purpose: electrophilic $^{18}F(T_{1/2}=110\;min)$ radionuclide in the form of $[^{18}F]F_2$ gas is of great significance for labeling radiopharmaceuticals for positron omission tomography (PET). However, its production In high yield and with high specific radioactivity is still a challenge to overcome several problems on targetry. The aim of the present study was to develop a method suitable for the routine production of $[^{18}F]F_2$ for the electrophilic substitution reaction. Materials and Methods: The target was designed water-cooled aluminum target chamber system with a conical bore shape. Production of the elemental fluorine was carried out via the $^{18}O(p,n)^{18}F$ reaction using a two-step irradiation protocol. In the first irradiation, the target filled with highly enriched $^{18}O_2$ was irradiated with protons for $^{18}F$ production, which were adsorbed on the inner surface of target body. In the second irradiation, the mixed gas ($1%[^{19}F]F_2/Ar$) was leaded into the target chamber, fellowing a short irradiation of proton for isotopic exchange between the carrier-fluorine and the radiofluorine absorbed in the target chamber. Optimization of production was performed as the function of irradiation time, the beam current and $^{18}O_2$ loading pressure. Results: Production runs was performed under the following optimum conditions: The 1st irradiation for the nuclear reaction (15.0 bar of 97% enriched $^{18}O_2$, 13.2 MeV protons, 30 ${\mu}A$, 60-90 min irradiation), the recovery of enriched oxygen via cryogenic pumping; The 2nd irradiation for the recovery of absorbed radiofluorine (12.0 bar of 1% $[^{19}F]fluorine/argon$ gas, 13.2 MeV protons, 30 ${\mu}A$, 20-30 min irradiation) the recovery of $[^{18}F]fluorine$ for synthesis. The yield of $[^{18}F]fluorine$ at EOB (end of bombardment) was achieved around $34{\pm}6.0$ GBq (n>10). Conclusion: The production of $^{18}F$ electrophilic agent via $^{18}O(p,n)^{18}F$ reaction was much under investigation. Especially, an aluminum gas target was very advantageous for routine production of $[^{18}F]fluorine$. These results suggest the possibility to use $[^{18}F]F_2$ gas as a electrophilic substitution agent.

Sensitivity of rice Plant to Potassium Stress of Various Growth Stages -II Effect of potassium depression on grain yield and its relation to nutrient content (생육시기별수도(生育時期別水稻)의 가리부족(加里不足)에 대(對)한 감수성(感受性) -II 수량(收量)에 대(對)한 가리결제(加里缺除)의 영향(影響) 및 수량(收量)과 양분함량(養分含量)과의 관계(關係))

  • Park, Hoon;Mok, Sung Kyun;Kim, Sung Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.163-175
    • /
    • 1974
  • Effects on yields, yield components and nutrient content of potassium depression for two or three weeks at various growth stages were investigated in rice (var. Jinheung) under sand culture system.(K 40 ppm 1973) 1. Analysis of variance showed significant difference among treatments of both two-week (at p=0.01) and three-week depression (at p=0.05) in yield. 2. Most sensitive stage to potassium depression on yield appeared two weeks until heading (42% yield decrease) and sensitivity decreased the growth stage is apart from heading either before or after. During 30 days after transplanting two-week potassium depression increased yield, but three-week depression decreased yield. Until about 30 days after heading depression caused poor yield. 3. Root potassium involves in harvest index, filled grain ratio and grain weight with significant correlation and considerably in spikelet per panicle while potassium in leaf sheath+culm involves considerably in spikelet per panicle and panicle per hill. Relative total dry matter weight was significantly correlated with panicle per hill, spikelet per panicle and K or K/Ca+Mg only in leaf sheath+culm. The indications are that root potassium contributes for building sink and efficiency of structure while potassium in leaf sheat+culm primarily for building source, productive structure. 4. Relative yield was significantly correlated with potassium content in root and leaf sheath+culm and with K/Ca+Mg and its ratio before and after depression in root indicating that potassium depression occurs greatly in root and that K/Ca+Mg might have more important role than K content alone under depression. 5. Optimum level of $K_2O$ appears around 3% in leaf blade. 4% in leaf sheath+culm and 1% in root under the assumption that below these level the same content has the same role in relation to yield during growth. The K/Ca+Mg appeares to be 2.5 in root and should not decrease throughout the growth stages. 6. The increase of sodium content in plant by K depression was highest, especially in leaf sheath during the most insensitive period to K depression suggesting that insensitivity may be attributed to partial replacement of Na for K. Partial replacement seems very little in sensitive stage (later stage) and sensitive organ (root).

  • PDF

Study on the Small Grain Bin for the Improvement of Grain Drying and Storage (곡물건조저장법 개선을 위한 농가용 Grain Bin에 관한 연구)

  • 김성래
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3263-3291
    • /
    • 1974
  • Experimental work of grain bin was carried out to develop the methods of natural air in-bin drying and storage. The method is considered to be more economical, labour saving, and an effective countermeasure to grain loss. To examine the possibility of farm use of the grain bin and to analyze the related factors concerned with in-bin grain drying and storage, ambient air conditions (especially the change of air temperature and relative humidity) and grain quality during drying and storage periods were investigated. A laboratory model bin was constructed to investigate the effect of different forced air conditions on the drying characteristics of rice. In addition, a grain bin with 2.2m diameter and 1.8m height, considered to be the optimum size for the average Korean farm, was constructed and tested to examine the drying and storing characteristics of rice. The weather data analyzed in this study was the nine-year (from 1964 to 1972) record of air temperature and relative humidity in the Suweon area, and the thirty-year (from 1931 to 1960) record of pentad normal relative humidity and air temperature in the Seoul area. From the results of the weather data analyses, the adequate air delivery hours (which was arbitrary defined as the condition to give less than 75% relative humidity) to dry the rice during October were about nine hours (from approximately 10 A.M. to 7 P.M, ) a day, in which the average air temperature was about 15.9$^{\circ}C$ and average relative humidity was 66%. The occurence of days having three hours of such conditions was 1, 2, and 1-day within the 1st, 2nd add last 10-day periods for the month of October, respectively. Therefore, it may be considered that the weather condition in October was satisfactory for the forced natural air drying. The results of the laboratory model bin test were analyzed to obtain the drying curve and drying rate for different drying stages and grain layers in the bin corresponding to various conditions of forced natural air. A drying experiment with a prototype grain bin showed that an approximate 5 percent grain moisture gradient through a 1.6 meter grain deposit was observed after 80 hours of intermittent drying, giving an over dried zone in the lower grain layers and an extremely high grain moisture zone in the upper layers. This indicates that an effective measure should be taken to reduce this high moisture gradient. In order to investigate the drying characteristics of bulk grain in a layerturning operation a grain bin test was performed. This showed a significant improvement of uniform drying. In this test, approximate 107 hours were required to dry a depth of 1.6 meter of grain from an initial moisture content of 22.2 percent to a moisture content of 16.7 percent using an air delivery rate of 2.8 cubic meter per a minute per every cubic meter of grain. This resulted in a 2 percent moisture gradient from the top to the bottom of the bin. During storage period, till the end of June the average temperature of grain was 2~3$^{\circ}C$ higher than ambient air temperature. But during July when the grain moisture content went up slightly (less than 1 percent), the average temperature of the grain also increased to 3~5$^{\circ}C$ higher than ambient air temperature. It is therefore recommended that for safe grain storage, grain should not be stored in sheet metal bins after mid May. From the above results, in-bin rice drying and storage can be used effectively on Korean farms. It is strongly recommended that the use of grain-bin system should be implemented for farm use to improve farm drying and storage of rice.

  • PDF

Preparation of Polymer Gel Electrolyte for EDLCs using P(VdF-co-HFP)/PVP (P(VdF-co-HFP)/PVP를 이용한 EDLC용 고분자 겔 전해질의 제조)

  • Jung, Hyun-Chul;Jang, In-Young;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2006
  • Porous polymer gel electrolytes (PGEs) based on poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) as a polymer matrix and polyvinylpyrolidone (PVP) as a pore-forming agent were prepared and electrochemical properties were investigated for an electric double layer capacitor (EDLC) in order to increase a permeability of an electrolyte into the PGE. Propylene carbonate (PC) and ethylene carbonate (EC) as plasticizers, and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a supporting salt for the PGE were used. EDLC unit cells were assembled with the PGE and electrode comprising BP-20 and MSP-20 as activated carbon powders, Super P as a conducting agent, and P(VdF-co-HFP)/PVP as a mixed binder. Ion conductivity of PGEs increased with an increased PVP content and was the best at 7 wt% PVP, whereas electrochemical characteristics such as AC-ESR of unit cell were better in 3 wt%. And electrochemical characteristics of the unit cell with PGE were the best at a 33 : 33 weight ratio of PC to EC. Specific capacitance of a mixed plasticizer system of PE and EC was higher than that of pure PC. Ion conductivity of PGEs with a film thickness of $20{\mu}m$ was higher, but electrochemical characteristics of unit cells were higher for a $50{\mu}m$ membrane thickness. Also, the unit cell has shown the highest capacitance of 31.41 F/g and more stable electrochemical performance when PGE and electrode were hot pressed. Consequently, the optimum composition ratio of PGE for EDLCs was 23 : 66 : 11 wt% such as P(VdF-co-HFP) : PVP = 20 : 3 wt% and PC : EC = 44 : 22 wt%. In this case, $3.17{\times}10^{-3}S/cm$ of ion conductivity was achieved at the $50{\mu}m$ thickness of PGE for EDLCs. And the electrochemical characteristics of unit cells were $2.69{\Omega}$ of DC-ESR, 28 F/g of specific capacitance, and 100% of coulombic efficiency.

Selection of Promising Forage Crops and Variety for Forage Production in Paddy Field 3. Yeongnam region (Milyang) (권역별 답리작 사료작물 최대 생산을 위한 적작목(품종) 선발 3. 영남지방(밀양)을 중심으로)

  • Seo, Sung;Kim, Won-Ho;Kim, Jong-Guen;Choi, Gi-Jun;Ko, Jong-Min;Lim, Si-Gyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • This study was carried out to select the promising forage crops fer forage production in paddy field of YARI, RDA, Milyang from 1999 to 2001. The species of forage crop used in this experiment were barley(5 varieties), wheat(2), rye(3) and Italian ryegrass(IRG, 3). Stages of heading, milk and yellow ripe of barley were $20{\sim}24$ April, $6{\sim}10$ May and $21{\sim}24$ May, respectively. In milk to yellow ripe stage, dry matter(DM) yield of barley was $7.89{\sim}9.66$ MT per ha, and averaged ADF and NDF contents were $26.9{\sim}33.3%\;and\;53.1{\sim}59.2%$, respectively. Albori and Naehanssalbori were the most promising varieties among the barley. The growth of wheat was a little late compared to that of barley, but it seemed to be crop having higher forage yield and nutritive value. In milk to yellow stage, DM yield of wheat was $9.13{\sim}10.38$ MT per ha, and nutritive value of wheat was very good(ADF $25.9{\sim}31.7%$ and NDF $53.3{\sim}55.8%$). Heading stage of rye was $20{\sim}24$ April, and it seemed to be suitable far harvest at heading to flowering stage because of heavy lodging after flowering. In flowering stage, DM yield of rye was 13.64 MT per ha, and nutritive value of rye was the lowest among 4 species(ADF $33.1{\sim}38.0%$ and NDF $56.4{\sim}65.0%$). Heading stage of early maturing IRG was 2 May and it seemed to be suitable for harvest at flowering stage of middle May in cropping system. In flowering stage, DM yield of early type IRG was 5.51 MT per ha, and averaged ADF and NDF contents were $30.1{\sim}34.7%\;and\;59.7{\sim}60.5%$, respectively. The results demonstrated that the promising forage crops far forage production in paddy field were rye, barley, early maturing IRG and wheat in Yeongnam region. In Southern region, rye harvesting at early May was recommended when considered middle May of rice transplanting period, and barley(Albori and Naehanssalbori) and early maturing IRG harvesting at middle May were recommended when considered late May of rice planting period. And also, wheat with high nutritive value and possibility for harvesting at late May were recommended in case of transplanting period at early June.

Short-term changes of phytoplankton communities after nutrient addition and establishment of stable mass culture condition to prepare the type approval test of USCG Phase-II in mesocosm enclosure (메소코즘에서 USCG phase-II 형식승인 대비 영양염 첨가에 따른 식물플랑크톤 대량 배양조건 확립 및 군집구조의 단주기변화)

  • Baek, Seung Ho;Lee, Min Ji;Shin, Kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.34-42
    • /
    • 2016
  • In order to prepare for the type approval test for the United States Coast Guard (USCG) Phase-II of Ballast Water Treatment System (BWTS), a phytoplankton mass culture was conducted in a mesocosm enclosure. We evaluated the response of the phytoplankton community after nutrient addition (+N, +P, and +NP) and investigated the development of the species with increasing culture time. After nutrient dosing, the phytoplankton population significantly (p < 0.05) increased from day 1 to day 3, depending on the nutrient treatments In particular, the specific growth rate of the phytoplankton community in the case of +NP treatment and + N treatment were estimated to be $2.47d^{-1}$ and $1.98d^{-1}$, respectively. The phytoplankton population density in the case of + NP treatment was approximately 50 times higher than that of the control group, suggesting that these treatments could be useful for mass culturing phytoplankton (> 75% of natural community) for the approval regulation of USCG Phase-II. In the phytoplankton community of the mesocosm, Pseudo-nitzchia spp. dominated in the logarithmic growth phase. The cell density decreased significantly (p < 0.05) with increasing time, coinciding with the nutrient limitation. At that time, the dominance of Pseudo-nitzchia spp. shifted to that of Cylindrotheca closterium. Therefore, the optimum nutrient concentration ($N:30{\mu}M$, $P:3{\mu}M$) and reasonable harvesting time (after 3 days in summer) found in this study for the mass culturing of phytoplankton may be helpful to meet the USCG Phase-II biological criteria to be used in BWTS.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Effect of Nitrogen Impurity on Process Design of $CO_2$ Marine Geological Storage: Evaluation of Equation of State and Optimization of Binary Parameter (질소 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태방정식의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • Marine geological storage of $CO_2$ is regarded as one of the most promising options to response climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_x$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of the present paper is to compare and analyse the relevant equations of state including PR, PRBM, RKS and SRK equation of state for $CO_2-N_2$ mixture. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $N_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable equation of state and relevant binary parameter in designing the $CO_2-N_2$ mixture marine geological storage process.

  • PDF