• 제목/요약/키워드: Optimum structural modification method

검색결과 24건 처리시간 0.024초

보강재의 수를 포함한 보강판 구조물의 동특성의 최적변경 (The Optimum Modification of Dynamic Characteristics of Stiffened Plate Structure Including the Number of Stiffener)

  • 박성현;고재용
    • 한국항해학회지
    • /
    • 제25권4호
    • /
    • pp.461-469
    • /
    • 2001
  • The purpose of this paper is the optimum modification of dynamic characteristics of stiffened plate structure including the number of stiffener. This paper shows the optimum structural modification method by dynamic sensitivity analysis and quasi-least squares method and considers it's validity. In the method of the optimization, finite element method, sensitivity analysis and optimum structural modification method are used. The change of natural frequency and total weight are made to be an objective function. Thickness of plate, the number of stiffener and cross section moment of stiffener become a design variable. The dynamic characteristics of stiffened plate structure is analyzed using finite element method. Next, rate of change of dynamic characteristics by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using optimum structural modification method. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure including the number of stiffener.

  • PDF

거대 구조물의 국부진동계의 등가계 산출과 이를 이용한 최적구조변경법 (A Study on the estimation of an equivalent system of a local vibration system of a huge structure and the Optimum Structural Modification Method)

  • 박석주;황문주;오창근;김성우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 춘계학술발표회 논문집
    • /
    • pp.120-127
    • /
    • 1998
  • It is very difficult to execute the vibration analysis of a huge strucutre, which takes up much time and expense. In this paper we intend to make the equivalent system of a local vibration system of a huge structure with a view to improving the dynamic characteristics and reducing time and expense. First of all, upper deck structure model is maded. And we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the upper deck structure model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. To make the equivalent system, we give boundary condition to sub-structure that want to be modified and execute the Sensitivity Analysis Method and the Optimum Structural Modification Method. And we execute the structural modification of the equivalent system.. The following can be found from this study. 1. The analytical results are generally coincident with each other. 2. The equivalent system of the superstructure model can be easily obtained using the sensitivity analysis metho and the optimum structural modification method. 3. The structural modification using the equivalent system can be obtained good results above 90% of object value.

  • PDF

형상변경에 의한 최적구조변경법 (The optimum structural modification by shape changes)

  • 오창근;박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권3호
    • /
    • pp.42-49
    • /
    • 1995
  • In this study, the optimum structural modification of the L-type structure by shape changes is suggested. The vibration characteristics of L-type structure are analyzed by the sub-structure synthesis method, and the coordinte sensitivities of each sub-structure are calculated and the change quantities of the positions to be modified are suggested by using the coordinate sensitivities. The results obtained are as follows : 1. The sensitivities of the natural frequency could be calculated by the sensitivity analysis. 2. The change quantities of the position to be modified could be suggested by the optimum structural modification method. 3. The developed program could reduce the process and time of computation, since the sensitivity was directly calculated by differential method, not finite difference method.

  • PDF

신체의 Stiffened Plate 구조물의 모우드해석과 최적변경법에 관한 연구 (Study on the Optimum Modification and Modal Analysis of Stiffened Plate of Ship Hull Structure)

  • 박성현;박석주;고재용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 제 25회 정기총회 및 추계학술발표회
    • /
    • pp.51-58
    • /
    • 2000
  • The purpose of this study is the optimum modification of dynamic characteristics of stiffened plate structure. In the method of the optimization ,finite element method (FEM), sensitivity analysis and optimum structural modification method are used. To begin with, using FEM, the dynamic characteristics of stiffened plate structure is analyzed. Next, rate of change of dynamic characteristic by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of plate and cross section moment become a design variable. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure.

  • PDF

보강재를 이용한 열린 상자형 구조물의 구조변경법에 관한 연구 (A Study on the Structural Modification of the Open Box Type Structure by Using the Stiffener)

  • 박석주;최창우;오창근;왕지석;정재현
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.57-64
    • /
    • 1996
  • The objectiv of this paper is to offer the method of the optimum structural modification by fixing the stiffener on the structure. The vibrational characteristics of a open box type structure are analyzed by the sub-structure synthesis method and sensitivies of each sub-structure are calculated by sensitivity analysis method. The positions to modify are found and the quantities to change are obtained by optimization techniques. As the result, it was found that; (1) The sensitivites of the natural frequency could easily be calculated by the sensitivity analysis method and the optimum position to fix stiffeners could be found. (2) The exact size of stiffeners could be calculated by the optimum structural modification method and the natural frequency could be easily shifted to the objective value. (3) It could be confirmed that the stiffener is a effective tool for accomplishing structural modification.

  • PDF

선박의 보강판 구조물의 동특성의 최적 변경법에 관한 연구 (A Study on the Optimum Modification of Dynamic Characteristics of Stiffened Plate Structure of Ship)

  • 박성현;박석주;고재용
    • 한국항해학회지
    • /
    • 제25권1호
    • /
    • pp.45-52
    • /
    • 2001
  • 본 논문은 선체구조에 많이 이용되고 있는 보강판 구조물의 동적 특성을 최적 변경하는데 그 목적이 있다. 유한요소법(FEM), 동적 감도해석법, 최적구조 변경법을 이용하여 보강판의 동적 특성을 최적화한다. 먼저, FEM을 이용하여 보강판 구조물의 동적 특성을 해석한다. 다음으로 설계변수의 변화에 따른 동적 특성의 변화율을 동적 감도해석법으로 해석한다. 감도해석법으로 구한 감도값과 최적구조 변경법을 이용하여 설계변수들의 변경 량을 계산한다. 보강판 구조물의 고유진동수의 변경을 목적함수로 하고, 보강판의 두께와 보강재의 단면2차 모우멘트를 설계 변수로 한다. 본 논문에서 이용한 최적구조 변경법이 보강판 구조물의 동특성을 최적화하는데 유용함을 보여준다.

  • PDF

엔진 블록의 중량 최소화에 관한 연구 (A study on the weight minimization of an engine block)

  • 오창근;박석주;박영범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.231-236
    • /
    • 1996
  • Recently to develope an automobile with better properties, much researches and investments are executed in many countries. In this paper, the weight of an engine block intend to minimize without changing the natural frequency. The weight minimization of an engine block is started from much less initial thickness than original thickness of the model and performed by using the sensitive analysis method and the optimum structural modification method. It can be considered that the weight minimization is completed through this process, because the optimum structural modification method includes the constraint of minimum changing quantity.

  • PDF

고유진동수의 간이 추정식을 이용한 보강판 구조물의 동특성의 최적변경에 관한 연구 (A Study on Optimum Modification of Dynamic Characteristics of Stiffened Plate Using Simplified Equation of Natural Frequency)

  • 박성현;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.48-58
    • /
    • 2002
  • There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.

거대 구조물의 국부진동계의 등가계 산출과 이를 이용한 최적구조변경법 (A study on the estimation of an equivalent system of a local vibration system of a huge structure and the Optimum Structural Modification Method)

  • 황문주;박석주;이기문
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.364-369
    • /
    • 1997
  • It is very difficult to execute the vibration analysis of a huge structure, which takes up much time and expense. In this paper we intend to make the equivalent system of a local vibration system of a huge structure with a view to improving the dynamic characteristics and reducing time and expense. First of all, upper deck structure model is maded. And we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the upper deck structure model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. To make the equivalent system, we give boundary condition to sub-structure that want to be modified and execute the Sensitivity Analysis Method and the Optimum Structural Modification Method. And we execute the structural modification of the equivalent system.

  • PDF

열린 상자형 구조물의 진동 최소화 기법에 관한 연구 (A Study on the Vibration Minimization Techniques for the Open Box Type Structure)

  • 박석주;오재응;이장용;박성현
    • 소음진동
    • /
    • 제4권4호
    • /
    • pp.479-486
    • /
    • 1994
  • The Finite Element Method(FEM) generally used for the structural analysis has some defects, i.e. a great deal of computational time and huge memory capacity of computer are needed in the application to large and/or complex structures, etc. Therefore the Component Mode Synthesis method(CMS), one of sub-structure synthesis methods, was made to improve such demerits and has been developed up to now. In optimum structural modification problems, the sensitivity analysis method is useful, where the sensitivity-calculated by Fox's suggestion-is defined as the diffentials of design variables for the objective values. This paper discusses the vibration minimization techniques for the oper box type structure, in which it is assumed that an engine operates at 10-40Hz range. The results obtained are as follow; (1) The sensitivity of natural frequency could be easily obtained by sensitivity analysis method and the optimum position to insert pillars could be found by using it. (2) The rates of structural modification could be exactly obtained and the natural frequency observed could be easily shifted to the objective value. (3) The maximum amplitude around natural frequency noted could be nearly reduced to 1/25 by modification.

  • PDF