• Title/Summary/Keyword: Optimum solution flow rate

Search Result 91, Processing Time 0.025 seconds

Direct Preparation of fine Powders of Bi-Pb-Sr-Ca-Cu-O by Ultrasonic Spray Pyrolysis (초음파 분무열분해에 의한 Bi-Pb-Sr-Ca-Cu-O의 미분체 제조)

  • 주명희;박도순;김윤수
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.353-358
    • /
    • 1991
  • Fine powders of the 2212 superconducting phase of bismuth system have been prepared directly from solution using ultrasonic spray pyrolysis. The fine superconducting powders produced by pyrolysis were characterized for the size, shape, and crystalline phase by SEM and XRD. The pyrolysis temperature, flow rate of the carrier gas, residence time of the droplets greatly influenced the size, shape, and crystalline phase. The optimum temperature and flow rate of the carrier gas for the preparation of fine powders of the 2212 superconduting phase were found to be 830$^{\circ}C$and 3ι/min, respectively.

  • PDF

Process Optimization for Life Extension of Electropolishing Solution using Half Round Bus Bar (반구형 부스바를 이용한 전해연마액 수명연장을 위한 공정 최적화)

  • Kim, Soo Han;Lee, Seung Heon;Cho, Jaehoon;Lim, Dong-Ha;Choi, Joongso;Park, Chulhwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.447-453
    • /
    • 2016
  • In this study, we intended to extend the life of electropolishing solution through the reduction of electric resistance by improving the electrolysis efficiency. The optimum conditions were obtained by half round bus bar and Taguchi method. As the main control factors in the electropolishing process, current density, polishing time, electrolyte temperature and flow rate were selected. The electrolyte temperature was the most significant to the electrolysis efficiency. The optimum conditions for the life extension of electropolishing solution were as follows: current density, $45A/dm^2$; polishing time, 6 min; electrolyte temperature, $70^{\circ}C$; flow rate, 11 L/min. As a results of ANOVA of SN ratios, it was found that the electrolyte temperature was significant factor at the 90% confidence level.

A Study on fabrication of the Ag fine pattern using Near Field Electro Spinning(NFES) (근접장 전기방사 방식을 이용한 Ag 미세 패턴 형성)

  • Sim, Hyo-Sun;Seo, Hwa-Il;Youn, Doo-Hyeb
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • These days, printed electronics attract attention from electronics industry. In this paper, the fabrication of the fine patterns by Near Field Electro Spinning (NFES) was studied by using Ag ink on silicon wafer (substrate). Two types of ink, the high viscous ink Ag-200 and low viscous ink Ag-15, were used. The fine and uniform patterns were easily fabricated by using Ag-200 because jet breakup is less occurred in high viscosity solution. As increasing flow rate of solution, aspect ratio of Ag pattern decreased. And there was optimum applied voltage for fine pattern. In case of Ag-200, the optimum applied voltage was about 2.02KV. When pattern was fabricated by NFES, the pattern width and height were affected by many factors such as viscosity, flow rate of solution, applied voltage etc.

Optimization of DOSL Surfactant Solution Conditions in Surfactant-Enhanced Remediation of Soil Contaminated by Toluene (톨루엔으로 오염된 토양에서 DOSL 계면활성제를 이용한 최적의 정화 조건 규명)

  • ;;Robert D. Cody
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.23-30
    • /
    • 2001
  • Column tests were carried out to examine the effect of surfactant solution conditions on the surfactant-enhanced remediation of soil columns contaminated by toluene. The conditioned parameters of the surfactant solution for the column tests were concentration, pH, temperature and flow rate. The test results revealed that an optimum condition was achieved for 4% (v/v) of concentration, 10 of pH, $20^{\circ}C$ of temperature and 4 mL/min of flow rate respectively. The removal of 95% of toluene was obtained when optimal conditions of each surfactant solution parameter were simultaneously met. This was a marked improvement and removal efficiency increased by 6-19% compared to that with unadjusted conditions. The optimum range of these parameters may be useful for a surfactant-based remediation in the aquifer contaminated by toluene.

  • PDF

The Effect of Additives in the Cardioplegic Solution on the Recovery of Myocardium, Compariosn Among Albumin, Mannitol, and Glucose (심마비용액의 삼투압을 유지하기위한 첨가 물질들의 차이가 심근보호에 미치는 영향)

  • Kim, Eun-Gi;Lee, Jong-Guk;Lee, Sang-Heon
    • Journal of Chest Surgery
    • /
    • v.24 no.11
    • /
    • pp.1058-1067
    • /
    • 1991
  • High potassium cardioplegia is a widely accepted procedure to enhance myocardial protection from ischemic injuries associated with open heart surgery. Maintaining optimum osmolarity of the cardioplegic solution is one of the required conditions for an ideal cardioplegic solution Albumin is an frequently added component for maintaining optimum osmolarity of clinically used cardioplegic solutions. But the source of albumin is human blood so that the supply is limited and the cost of manufacturing is relatively high. Recently there are moves to minimized the use of blood product for fear of blood-associated infections or immunological disorders. In this experiment, we substituted mannitol or glucose for albumin added to the cardioplegic solution which has been used at the Wonju Medical College, To determine whether addition of mannitol or glucose instead of albumin in the cardioplegic solution can produce satisfactory myocardial protection during ischemia, three different groups of isolated rat heart perfused by modified Langendorff technique were studied. Wonju Cardioplegic Solution was selected as a standard high potassium[18mEq/L of K+] cardioplegic solution. Three kinds of cardioplegic solution were made by modifying the composition maintaining the same osmolarity[339$\pm$1mOsm/Kg] Isolated rat heart were perfused initially with retrograde nonworking mode and then changed to working mode. After measuring the heart rate, systolic aortic pressure, aortic flow, coronary flow, ischemic arrest by aorta cross clamp and cardioplegia was made maintaining the temperature of water jacket at 10oC. The heart was rewarmed and reperfused after 60min of ischemic arrest with intermittent cardioplegia at the 30min interval. The time to return of heart beat and the time required to get. Regular heart beat were observed after reperfusion. The recovery rate of the functional variables-heart rate, systolic aortic pressure, aortic flow, coronary flow and cardiac output were calculated and compared among the three groups of different cardioplegia-albumin, mannitol, and glucose. The wet weight and dry weight was measured and the water content of the heart as figured out for comparison. The time to return of heart beat was fastest in the albumin group, The functional recovery rates were best in the albumin group also. In the above conditions, albumin was the best additive to the cardioplegic solution compared to the mannitol or glucose.

  • PDF

Methane Recovery and Carbon Dioxide Stripping by MEA Solution the Autocirculation Bubble Lift Column Reactor (내부순환식 기포탑 반응기 상에서 MEA (monoethanolamine) 용액에 의한 이산화탄소 분리 및 메탄회수)

  • Lee, In-Hwa;Kim, Sun-Yil;Park, Ju-Young
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • For the simultaneous methane recovery and $CO_2$-stripping, we have been developed dual vent auto circulation bubble lift column reactor, and evaluate optimum conditions for monoethanolamine (MEA) solutions as a $CO_2$ absorbent. At the 5 wt% MEA solution, we investigated the pH change during $CO_2$-stripping and absorption reaction, $CO_2$-stripping rate with reaction time, methane recovery efficiency for various inflow rates of air, $CO_2$-stripping rate for flow liquid over flow height, and $CO_2$-stripping dependency on the temperature of absolvent solutions. The suggested optimum conditions for $CO_2$ recovery with MEA in the dual vent auto circulation bubble lift column reactor were 40 mm over flow liquid height, 1.5 L/min of air inflow rate, and $25^{\circ}C$ of absorbent solution temperature.

A Research on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System (SCR 시스템의 요소용액 미립화 및 분해반응 특성 예측에 관한 전산 해석 연구)

  • 김주연;민병수;하지수;류승협
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.818-826
    • /
    • 2004
  • The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR(Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated Particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.

A Study on the Inactivation of Phytophthora Blight Pathogen (Phytophthora capsici) using Plasma Process (플라즈마 공정을 이용한 고추역병균(Phytophthora capsici) 불활성화에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1601-1608
    • /
    • 2014
  • Plasma reactor was used for the inactivation of Phytophthora capsici which is phytophthora blight pathogen in aquiculture. Effects of first voltage, second voltage, air flow rate, pH, incubation water concentration were examined. At the low $1^{st}$ voltage, under 80 V, the lag phase was noticed within 30 sec, however, it was not shown over 100 V. The variation of optimum operation condition was not shown by the variation of microorganisms. However, the inactivation rate was different by the variation of species of microorganisms. The inactivation rate and efficiency were increased by the increase of $2^{nd}$ voltage. The highest initial inactivation rate was shown at pH 3 and the rate was decreased by the increase of pH. The inactivation rate increased by the increase of air flow rate, however, it was shown as similar at the rate of 4 L/min and 5 L/min. The inactivation rate was distinctly decreased at the three times concentration of incubation solution comparing at the distilled water and basic incubation solution.

Effects of Operating Parameters on Electrochemical Degradation of Rhodamine B and Formation of OH Radical Using BDD Electrode (BDD 전극을 이용한 OH 라디칼 생성과 염료 분해에 미치는 운전인자의 영향)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1143-1152
    • /
    • 2010
  • The purpose of this study is to degradation of Rhodamine B (RhB, dye) and N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the electro-generation of OH radical) in solution using boron doped diamond (BDD) electrode. The effects of applied current (0.2~1.0 A), electrolyte type (NaCl, KCl, and $Na_2SO_4$) and electrolyte concentration (0.5~3.0 g/L), solution pH (3~11) and air flow rate (0~4 L/min) were evaluated. Experimental results showed that RhB and RNO removal tendencies appeared with the almost similar thing, except of current. Optimum current for RhB degradation was 0.6 A, however, RNO degradations was increased with increase of applied current. The RhB and RNO degradation of Cl type electrolyte were higher than that of the sulfate type. The RhB and RNO degradation were increased with increase of NaCl concentration and optimum NaCl dosage was 2.5 g/L. The RhB and RNO concentrations were not influenced by pH under pH 7. Optimum air flow rate for the oxidants generation and RhB and RNO degradation were 2 L/min. Initial removal rate of electrolysis process was expressed Langmuir - Hinshelwood equation, which is used to express the initial removal rate of UV/$TiO_$2 process.