• Title/Summary/Keyword: Optimum shape design

Search Result 652, Processing Time 0.025 seconds

Numerical Analysis of Load Reduction for Underground Arch Structures with Soft Zone Using Expanded PolyStyrene Geofoam (EPS Geofoam을 이용한 Soft Zone 적용방법에 따른 지중아치구조물의 하중저감에 관한 해석 연구)

  • Kim, Soo-Ha;Park, Jong-Sup;Kang, Jun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.24-30
    • /
    • 2018
  • As the demand for underground space increases, many researchers have been studying the load reduction method using high compressible materials to solve for the stability problem of the overhead load and for the increase of the earth pressure which decreases the function of the underground structure. This paper determines the optimum soft zone and the effect of the using EPS Geofoam as a load reduction material to arch structures. A finite element analysis program, ABAQUS, is used to analyze the soil-structure interaction and the behavior of buried arch structures considering different four EPS Geofoam forms to confirm the most conservative shape. The optimum cross-sectional shape was determined by comparing the results of earth pressure reduction rate in accordance with the change of span-rise ratio and span length of the arch structure. It was confirmed that the earth pressure generated in the arch structure using the optimal soft zone selected by the numerical analysis was reduced by an average of 78%. In this study, the effect of EPS Geofoam on soil pressure reduction and its applicability to underground arch structures will provide an economical and conservative way to design underground structures and will help to increase the usability of deep underground space.

Design of the Submerged Outlet Structure for Reducing Foam at a Power Plant using a Numerical Model Simulating Air Entrainment (공기연행 수치모형을 이용한 발전소 거품저감 수중방류구조 설계)

  • Kim, Ji-Young;Kang, Keum-Seok;Oh, Young-Min;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.452-460
    • /
    • 2008
  • Anti-foaming agents and foam fences have been used to remove the foam at the outfall of power plants, but there are some problems as consumption of maintenance costs and insufficiency of effect. Therefore, development of the methods how to remove the foam by stable coastal structure has been required. In this study, numerical simulation of air entrainment was carried out to design the submerged outlet structure for reducing foam using curtain walls. The air entrainment rate and the discharge of entrained air change according to the shape of weir and curtain wall. Hence, it is necessary to design the optimum section through comparison of each case. The optimum section which has the maximum rate of foam reduction was determined by the simulation results. In addition, it was found that the flow velocity at the submerged outlet is to be smaller than 1 m/s and the submerged depth of curtain wall is to be taller than height of the submerged outlet section.

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.

A Study on the Buckling Strength of Perforated Plates for 60M Twin-hull Car-ferry (60M급 쌍동형 카페리 구조의 유공판 좌굴강도 연구)

  • Seo, Kwang-Cheol;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.126-132
    • /
    • 2018
  • This paper discusses about results of advanced buckling strength design for several kinds of perforated plated in the twin-hull car-ferry. For medium / small sized high speed vessels with a length of more than 50 meters and a length / width ratio of more than 12, such as car-ferries, it is highly possible that the buckling strength becomes weak due to the relatively thin thickness and the use of low strength capacity such as mild steel. Especially, it becomes big problem about weak buckling rigidity around the opening to access purpose in the perforated. As regarding safety design point of view for perforated plate, it is necessary to clarify buckling strength and ultimate strength by the distribution of in-plane load distribution around the opening. In this study, nonlinear series analysis using ANSYS was performed to clarify the influence of parameters such as aspect ratio, opening ratio and opening shape affecting the buckling and ultimate strength characteristics of the perforated plate under axial compression and we are derived the optimum design as buckling strength point of view. Based on these results, the governing factor determining the buckling strength of the perforated plate was the opening ratio, and the aspect ratio and the shape of the hole were not influenced.

Shape Optimization of a Rotating Cooling Channel with Pin-Fins (핀휜이 부착된 회전하는 냉각유로의 최적설계)

  • Moon, Mi-Ae;Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.703-714
    • /
    • 2010
  • This paper describes the design optimization of a rotating rectangular channel with staggered arrays of pin-fins by Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to the diameter of the pin-fins and the ratio of the spacing between the pin-fins to the diameter of the pin-fins are chosen as the design variables. The objective function that is a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. To construct the Kriging model, objective function values at 20 training points generated by Latin hypercube sampling are evaluated by a three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis method with the SST turbulence model. The Kriging model predicts the objective function value that agrees well with the value calculated by the RANS analysis at the optimum point. The objective function is reduced by 11% by the optimization of the channel.

Basic Study on Performance Comparison of Structural Optimization Software Systems (구조최적설계 소프트웨어의 성능 비교에 대한 기초연구)

  • Choi, Wook Han;Huang, Cheng Guo;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1403-1413
    • /
    • 2014
  • Structural optimization is widely accepted in industrial fields. Structural optimization pursues improved performance of the structures. Recently, structural optimization is actively utilized due to the well-developed commercial design software systems. Three popular commercial structural optimization systems are investigated and compared. They are MSC.Nastran, Genesis and OptiStruct. The performance of the systems is analyzed based on the quality of the optimum solution and the computational time. Linear static response size, shape and topology optimizations are explored and compared with some test examples. For fair comparison, the systems are run in the same environment and the optimization parameters affecting the performance are unified. The optimization results are analyzed and the performances and characteristics of each software system are discussed.

Control of wind-induced motion in high-rise buildings with hybrid TM/MR dampers

  • Aly, Aly Mousaad
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.565-595
    • /
    • 2015
  • In recent years, high-rise buildings received a renewed interest as a means by which technical and economic advantages can be achieved, especially in areas of high population density. Taller and taller buildings are being built worldwide. These types of buildings present an asset and typically are built not to fail under wind loadings. The increase in a building's height results in increased flexibility, which can lead to significant vibrations, especially at top floors. Such oscillations can magnify the overall loads and can be annoying to the top floors' occupants. This paper shows that increased stiffness in high-rise buildings may not be a feasible solution and may not be used for the design for comfort and serviceability. High-rise buildings are unique, and a vibration control system for a certain building may not be suitable for another. Even for the same building, its behavior in the two lateral directions can be different. For this reason, the current study addresses the application of hybrid tuned mass and magneto-rheological (TM/MR) dampers that can work for such types of buildings. The proposed control scheme shows its effectiveness in reducing floors' accelerations for both comfort and serviceability concerns. Also, a dissipative analysis carried out shows that the MR dampers are working within the possible range of optimum performance. In addition, the design loads are dramatically reduced, creating more resilient and sustainable buildings. The purpose of this paper is to stimulate, shape, and communicate ideas for emerging control technologies that are essential for solving wind related problems in high-rise buildings, with the objective to build the more resilient and sustainable infrastructure and to optimally retrofit existing structures.

The Development of Basic Dress Torso Patterns for Women in Their 20s (20대 성인여성을 위한 드레스용 토르소원형 연구)

  • Lee, Yumin;Kim, Sora
    • Journal of Fashion Business
    • /
    • v.19 no.2
    • /
    • pp.85-102
    • /
    • 2015
  • This study aimed to develop dress torso patterns with both aesthetic and functional qualities that fit for women in their 20s. In order to develop dress torso patterns, wearing tests were done. By collecting drafting methods of the patterns through literature study and the survey of wedding dress manufacturers, four kinds of dress torso patterns were selected. The existing dress torso patterns have no or very small ease in chest, waist, and hip circumferences. As a result of wearing tests of these four existing dress torso patterns, drafting methods of dress torso patterns that have the best satisfied values close to optimum zero were selected; the first and second research dress torso patterns were developed by modifying and supplementing items that had noticeable difference through the Wilcoxon rank sum test with a selected measured value and a best satisfied value of zero; and deduced a drafting method for the final developed dress torso patterns by a wearing test of the second developed dress torso patterns. Distinctive aspects of drafting methods of the final developed dress torso patterns were that ease for each area was given differently by considering a functional quality and a chest circumference instead of a bust circumference was applied to reduce influence by the size of breast in neck and armhole areas, and a back bust level. Back neck breadth was made wider and front neck breadth was made less narrow due to a recent change of age 20s female adults' shoulder and back shape.

Determination of Optimal Section for Corrugated Steel Plates (파형강판의 최적단면 결정)

  • Na, Ho-Sung;Choi, Dong-Ho;Yoo, Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.5-12
    • /
    • 2011
  • In this paper, after studying structural performance for the representative corrugated steel plate used in Korea, we proposed the optimum shape for section of corrugated steel plate considering a width of steel plates that can be produced currently in the factory. Using AISI(1986) in examination for the performance of the corrugated steel plate, we determined the mechanical limit of the optimum sections considering shear force and bending moment of corrugated steel plate and also determined the geometric limit of them considering formability, shapes and ratio between width of steel plate before forming and that after forming. As a result of examination for performance of steel plate applying algorithm for searching optimal sections algorithm developed in this study to the existing representative corrugated steel plate, allowable force and moment of inertia indicated the maximum values at bending radius 76mm and internal bending angle $50^{\circ}$. And as an application result of the optimum design system that used SS490 with 1,550mm of width and 4,700mm of length considering current production situation in Korea, we developed the new section with more than 2 times of structural performance comparing with existing corrugated steel plate.

Numerical Analysis for the Optimum Design of Shroud Tidal Stream Generation System (쉬라우드 조류 발전 시스템 상부 두께 변화에 따른 유속 변화에 관한 연구)

  • Lee, Uk Jae;Lee, Sang Ho;Han, Seok Jong;Jeong, Shin Taek;Choi, Hyuk Jin;Ko, Dong Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.134-141
    • /
    • 2018
  • Numerical simulations were carried out to investigate the flow velocity changes in the flow field due to the variation in the thickness of the upper part of the shroud tidal power generation system. In this study, it was performed under constant flow velocity condition. In addition, performance analysis of shroud was performed under the same conditions. As the height of the upper part increases, the flow velocity rate gradually increases, and it tends to decrease at a certain height. As a result of analyzing the shape of the blade and the shape of the blade combined with the shroud, the torque of the blade increased due to the increase of the flow rate by the shroud system. It is expected that the shape of the structure obtained by this study and the analysis of the flow velocity distribution in the flow field can provide the data necessary for the development of an efficient shroud tidal power generation system.