• Title/Summary/Keyword: Optimum routing

Search Result 67, Processing Time 0.022 seconds

Hierarchical buffering scheme for supporting effective routing scheme in bidirectional MIN (Bidirectional MIN에서 효율적인 라우팅을 지원하기 위한 계층적 버퍼링 기법)

  • 장창수;김성천
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.12-19
    • /
    • 1996
  • Many recent supercomputers employ a kind of switch-based multistage interconnection network architectrues (MINs) for constructing scalabel parallel compters. This paper proposed a new routing method, hybrid wormhole and virtual-cut through routing (HWCR) for the prevention of rapid performance degradation comming from a conflict in links usage at hot traffic situation. This HWCR through (VCT) for the fast removing temporal stagger, result in seamless flow of packet stream. When the blocked link is removed, wormhole routing is resumed. The HWCR method adopted a hierachical buffer scheme for improving the network performance and reducing the cost in BMINs. We could get optimum buffer size and communicatin latency through the computer simulation based on proposed HWCR, and the results were compared to those using wormhole and VCT.

  • PDF

Nearest L- Neighbor Method with De-crossing in Vehicle Routing Problem

  • Kim, Hwan-Seong;Tran-Ngoc, Hoang-Son
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.143-151
    • /
    • 2009
  • The field of vehicle routing is currently growing rapidly because of many actual applications in truckload and less than truckload trucking, courier services, door to door services, and many other problems that generally hinder the optimization of transportation costs in a logistics network. The rapidly increasing number of customers in such a network has caused problems such as difficulty in cost optimization in terms of getting a global optimum solution in an acceptable time. Fast algorithms are needed to find sufficient solutions in a limited time that can be used for real time scheduling. In this paper, the nearest L-method (NLNM) is proposed to obtain a vehicle routing solution. String neighbors of different lengths were chosen, tested and compared. The applied de crossing procedure is meant to solve the routes by NLNM by giving a better solution and shorter computation time than that of NLNM with long string neighbors.

Flood Analysis in the Tidal Reaches of the Nakdong River (낙동강 하류부의 감조구간에 대한 홍수해석)

  • Lee, Joo-Heon;Lee, Eun-Tae;Lee, Do-Hun;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.235-242
    • /
    • 1998
  • The objective of this study is to develope a predictive model for flood forecasting in the tidal reaches of the Nakdong river and to analyze the tidal effects of major flood forecasting station of the Nakdong river by using the hydraulic flood routing. In the calibration process the optimum roughness coefficients as functions of channel reach and discharge were determined and the calibration results suggest that the unsteady hydraulic flood routing model simulated with the optimum roughness coefficients showed close agreement between the calculated and observed stage.

  • PDF

Comparative Results of Weather Routing Simulation (항로최적화기술 시뮬레이션 비교 결과)

  • Yoo, Yunja;Choi, Hyeong-Rae;Lee, Jeong-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • Weather routing method is one of the best practices of SEEMP (Ship Energy Efficiency Management Plan) for fuel-efficient operation of ship. KR is carrying out a basic research for development of the weather routing algorithm and making a monitoring system by FOC (Fuel Oil Consumption) analysis compared to the reference, which is the great circle route. The added resistances applied global sea/weather data can be calculated using ship data, and the results can be corrected to ship motions. The global sea/weather data such as significant wave height, ocean current and wind data can be used to calculate the added resistances. The reference route in a usual navigation is the great circle route, which is the shortest distance route. The global sea/weather data can be divided into grids, and the nearest grid data from a ship's position can be used to apply a ocean going vessel's sea conditions. Powell method is used as an optimized routing technique to minimize FOC considered sea/weather conditions, and FOC result can be compared with the great circle route result.

Joint routing, link capacity dimensioning, and switch port optimization for dynamic traffic in optical networks

  • Khan, Akhtar Nawaz;Khan, Zawar H.;Khattak, Khurram S.;Hafeez, Abdul
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.799-811
    • /
    • 2021
  • This paper considers a challenging problem: to simultaneously optimize the cost and the quality of service in opaque wavelength division multiplexing (WDM) networks. An optimization problem is proposed that takes the information including network topology, traffic between end nodes, and the target level of congestion at each link/ node in WDM networks. The outputs of this problem include routing, link channel capacities, and the optimum number of switch ports locally added/dropped at all switch nodes. The total network cost is reduced to maintain a minimum congestion level on all links, which provides an efficient trade-off solution for the network design problem. The optimal information is utilized for dynamic traffic in WDM networks, which is shown to achieve the desired performance with the guaranteed quality of service in different networks. It was found that for an average link blocking probability equal to 0.015, the proposed model achieves a net channel gain in terms of wavelength channels (𝛾w) equal to 35.72 %, 39.09 %, and 36.93 % compared to shortest path first routing and 𝛾w equal to 29.41 %, 37.35 %, and 27.47 % compared to alternate routing in three different networks.

A Study on Standardization of Optimum Transportation Routing based on GIS for Railway HAZMAT Transportation (GIS 기반 철도 위험물 최적수송경로도출 표준화에 관한 연구)

  • Paeng, Jung-Goang;Kim, Si-Gon;Park, Min-Kyu;Kang, Seung-Pil
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.201-211
    • /
    • 2009
  • The types and quantities of Hazmat and Hazmat transportation are gradually increasing, keeping pace with industrialization and urbanization. At present the safety management for Hazmat transportation only considers reducing accident probability, but even when an accident involving Hazmat-carrying vehicles occurs, that is not regarded as a Hazmat-related accident if the Hazmats do not leak out from the containers carrying them. Thus the methods to reduce risk (Risk=Probability$\times$Consequence) have to be developed by incorporating accident probability and consequence. By using Geographic Information System (GIS), a technical method is invented and is automatically able to evaluate the consequence by different types of Hazmat. Thus this study analyzed the degree of risk on the links classified by the Hazmat transport pathways. In order to mitigate the degree of risk, a method of 7-step risk management on Hazmat transportation in railway industries can be suggested. (1st step: building up GIS DB, 2nd step: calculating accident probability on each link, 3rd step: calculating consequence by Hazmat types, 4th step: determination of risk, 5th step: analysis of alternative plans for mitigating the risk, 6th: measure of effectiveness against each alternative, and 7th step: action plans to be weak probability and consequence by the range recommended from ALARP). In conclusion, those 7 steps are used as a standardization method of optimum transportation routing. And to increase the efficiency of optimum transportation routing, optional route can be revise by verification.

An Application of k-Means Clustering to Vehicle Routing Problems (K-Means Clustering의 차량경로문제 적용연구)

  • Ha, Je-Min;Moon, Geeju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • This research is to develop a possible process to apply k-means clustering to an efficient vehicle routing process under time varying vehicle moving speeds. Time varying vehicle moving speeds are easy to find in metropolitan area. There is a big difference between the moving time requirements of two specific delivery points. Less delivery times are necessary if a delivery vehicle moves after or before rush hours. Various vehicle moving speeds make the efficient vehicle route search process extremely difficult to find even for near optimum routes due to the changes of required time between delivery points. Delivery area division is designed to simplify this complicated VRPs due to time various vehicle speeds. Certain divided area can be grouped into few adjacent divisions to assume that no vehicle speed change in each division. The vehicle speeds moving between two delivery points within this adjacent division can be assumed to be same. This indicates that it is possible to search optimum routes based upon the distance between two points as regular traveling salesman problems. This makes the complicated search process simple to attack since few local optimum routes can be found and then connects them to make a complete route. A possible method to divide area using k-means clustering is suggested and detailed examples are given with explanations in this paper. It is clear that the results obtained using the suggested process are more reasonable than other methods. The suggested area division process can be used to generate better area division promising improved vehicle route generations.

Enhancing the Quality of Service by GBSO Splay Tree Routing Framework in Wireless Sensor Network

  • Majidha Fathima K. M.;M. Suganthi;N. Santhiyakumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2188-2208
    • /
    • 2023
  • Quality of Service (QoS) is a critical feature of Wireless Sensor Networks (WSNs) with routing algorithms. Data packets are moved between cluster heads with QoS using a number of energy-efficient routing techniques. However, sustaining high scalability while increasing the life of a WSN's networks scenario remains a challenging task. Thus, this research aims to develop an energy-balancing component that ensures equal energy consumption for all network sensors while offering flexible routing without congestion, even at peak hours. This research work proposes a Gravitational Blackhole Search Optimised splay tree routing framework. Based on the splay tree topology, the routing procedure is carried out by the suggested method using three distinct steps. Initially, the proposed GBSO decides the optimal route at initiation phases by choosing the root node with optimum energy in the splay tree. In the selection stage, the steps for energy update and trust update are completed by evaluating a novel reliance function utilising the Parent Reliance (PR) and Grand Parent Reliance (GPR). Finally, in the routing phase, using the fitness measure and the minimal distance, the GBSO algorithm determines the best route for data broadcast. The model results demonstrated the efficacy of the suggested technique with 99.52% packet delivery ratio, a minimum delay of 0.19 s, and a network lifetime of 1750 rounds with 200 nodes. Also, the comparative analysis ensured that the suggested algorithm surpasses the effectiveness of the existing algorithm in all aspects and guaranteed end-to-end delivery of packets.

Analysis and Reconstruction of Vehicle Speeds to Design an Efficient Time Dependent VRP Heuristic (시간종속VRP의 효율적 해법 설계를 위한 차량통행속도의 분석과 재구성)

  • Moon, Gee-Ju;Park, Sung-Mee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.140-147
    • /
    • 2012
  • Vehicle routing problem is one of the traveling salesman problems with various conditions such as vehicle capacity limits, delivery time windows, as well as time dependent speeds in metropolitan area. In this research hourly vehicle moving speeds information in a typical metropolitan area are analyzed to use the results in the design procedure of VRP heuristic. Quality initial vehicle routing solutions can be obtained with adaption of the analysed results of the time periods with no vehicle speed changes. This strategy makes complicated time dependent vehicle speed simple to solve. Time dependent vehicle speeds are too important to ignore to obtain optimum vehicle routing search for real life logistics systems.

A Study on Methodology of the Snow Removal Operation of Air Wing Using Hybrid ACS Algorithm (하이브리드 ACS 알고리즘을 이용한 군 비행단 제설작전 방법연구)

  • Choi, Jung-Rock;Kim, Gak-Gyu;Lee, Sang-Heon
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.31-42
    • /
    • 2013
  • The vehicle routing problem (VRP) can be described as a problem to find the optimum traveling routes from one or several depot (s) to number of geographically scattered customers. This study executes a revised Heterogeneous Vehicle Routing Problem (HVRP) to minimize the cost that needs to conduct efficiently the snow removal operations of Air Wing under available resources and limited operations time. For this HVRP, we model the algorithm of an hybrid Ant Colony System (ACS). In the initial step for finding a solution, the modeled algorithm applies various alterations of a parameter that presents an amount of pheromone coming out from ants. This improvement of the initial solution illustrates to affect to derive better result ultimately. The purpose of this study proves that the algorithm using Hybrid heuristic incorporated in tabu and ACS develops the early studies to search best solution.