• Title/Summary/Keyword: Optimum replacement

Search Result 273, Processing Time 0.038 seconds

A Study on the Estimation of the Optimum Lifetime of Elevator Components for Elevator Accident Prevention (엘리베이터 사고예방을 위한 승강기 부품의 최적 수명 추정에 관한 연구)

  • Kim, Han-jin;Hwang, Min-soo;Choi, Og-man;Lee, An-ki;Kim, Jae-chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1278-1284
    • /
    • 2017
  • As of December 2016, there are 608,828 elevators in operation in Korea and 179,790 elevators in more than 15 years. 30.4% of all elevator are aging. Improved maintenance of the elevator and proactive replacement of the parts of the elevator can extend the lifetime of the elevator and ensure safety. An unclean environment reduces the lifetime of elevator parts. If you do not clean the environment and prevent preventive parts replacement, eventually shortening the lifetime of the parts connected to the failed part or causing more damage will result in greater economic loss. Also, the risk of elevator safety accidents due to failures of elevator parts will be increased accordingly. The study of optimum replacement time of elevator parts will contribute to prevention of safety accident of elevator and prolongation of lifetime of elevator through preventive replacement of elevator parts.

A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio (결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구)

  • Kwon Yeong-Ho;Lee Hyun-Ho;Lee Hwa-Jin;Ha Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF

Optimum Replacement Times for a Steam Generator (증기발생기 최적 교체시기 결정에 관한 연구)

  • Hur, Jung-Hoon;Yun, Won-Young
    • IE interfaces
    • /
    • v.15 no.1
    • /
    • pp.89-98
    • /
    • 2002
  • This paper considers the optimum replacement times of a steam generator in nuclear power plant with failure data. It is assumed that the failure pattern of units is given as a Weibull distribution and repair and periodic preventive maintenance are performed periodically. The maximum likelihood method is used to estimated the Weibull parameters of failure distribution from failure data. Relpacement, output-decresing and maintenance costs are considered to determine the optimal replacement times by simulation. Numerical examples are included with actual failure data and cost estimators.

A Study on the Optimum Amount of Waste Foundry Sand and Flyash in Concrete (폐주물사와 플라이애쉬의 적정 사용량에 관한 연구)

  • Yang, Joo-Kyoung;Moon, Young-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.43-47
    • /
    • 2009
  • The most of waste foundry sands(WFS) have been discarded. It is very urgent for our country to make a study on recycling of WFS. The one of recycling method of WFS is using them as fine aggregate for concrete. This study provided the optimum amount of WFS and flyash when WFS and flyash were used together in concrete. The concrete made with 60% WFS fine aggregate replacement showed higher compressive strength, splitting tensile strength and modulus of elasticity than normal concrete. In the case that the flyash and WFS are replaced together, the compressive strength and splitting tensile strength were improved at flyash replacement ratio $10%{\sim}20%$ and WFS replacement ratio $40%{\sim}60%$. The increase of WFS and flyash replacement led lower air content. While the increase of WFS replacement led lower slump, the increase of flyash replacement led higher slump.

Properties of the high strength and self-compacting concrete according to the replacement ratio of fly ash (플라이애쉬의 치환율에 따른 고강도 자기충전 콘크리트의 특성)

  • Kwon, Yeong-Ho;Lee, Hyun-Ho;Lee, Hwa-Jin;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.85-88
    • /
    • 2006
  • This study describes the optimum mix proportion of the high strength and self-compacting concrete placed in main structures of LNG above tank. This concrete requires high strength level about $60{\sim}80MPa$, low hydration heat, balance between workability and consistency without vibrating in the actual work. For this purpose, low heat portland cement and fly ash are selected and design factors including water-binder ratio, replacement ratio of fly ash are tested. As experimental results, low heat portland cement shows lower the confined water ratio than another cement type and the optimum replacement ratio of fly ash in order to improve properties of the binder-paste shows 10% by cement weight considering test results of the confined water ratio$({\beta}p)$. Also, flowability of the high strength and self-compacting concrete by using fly ash about $10{\sim}20%$ is improved. The replacement ratio of fly ash 10% and water-binder ratio $25{\sim}27%$ are suitable to the design strength 80MPa and cost, In case of the design strength 60MPa, the replacement ratio of fly ash and water-binder ratio show 20% and $25{\sim}30%$ separately. Based on the results of this study, the optimum mix proportions of the high strength and self-compacting concrete will be applied to the construction of LNG above tank as a new type.

  • PDF

Properties of Mortar Using Powdered Waste Glasses (폐유리 분말을 이용한 모르타르의 특성)

  • 배수호;임병탁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.50-58
    • /
    • 2003
  • Due to the economic growth and the improvement of life standards in the country, the quantities of waste glasses have been yearly increased. About 65% of them are recycled and the rest are reclaimed. The reclaimed waste glasses can cause some problems such as the environmental pollution as well as the processing cost of them. Thus, the purpose of this experimental research is to investigate the properties of mortar using powdered waste glasses(PWG) as a cementitious materials in mortar to recycle the reclaimed waste glasses For this purpose, the workability and strength of mortar specimens using PWG have been tested and analyzed in various grain size of them by changing the replacement ratio. As a result, considering the workability and strength of mortar specimens using PWG, it is concluded that the optimum grain size and replacement ratio of them will be existing.

Crack Analysis of CFRD Tunnel Concrete Using Fly Ash and Steel Fiber (Fly Ash 및 강섬유를 사용한 CFRD 터널 콘크리트의 균열발생 가능성 분석)

  • Woo, Sang-Kyun;Noh, Jea-Myoung;Cho, Myong-Seok;Song, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.713-716
    • /
    • 2006
  • The main purpose of this research was to enhance the durability in both the design and construction of dams. Especially, in case of rockfill dams, the durability of tunnel concrete in a concrete-faced rockfill dam(CFRD) is achieved by optimizing the fly ash replacement for cement and application of steel fiber. The effect on durability and thermal property corresponding to the increasing replacement of fly ash and application of steel fiber was evaluated, and the optimum value of fly ash replacement and steel fiber application was recommended. The results show that 15% of fly ash replacement and $20kg/m^3$ of steel fiber application was found to be an optimum level and demonstrated excellent performance in durability and thermal property.

  • PDF

The High-Strengthing of Concrete with Admixture -On the Crushed Stone Concrete (혼화재에 의한 콘크리트의 고강도화에 관한 실험 연구(I) -쇄석 콘크리트를 대상으로-)

  • 김화중;김태섭;이용철;한종훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.113-117
    • /
    • 1993
  • The purpose of this study is to raise the strength of concrete with admixture. The natural zeolites and mud stone, abundant in this country, were used as admixture for high-strengthening of concrete. Proper workability was gained by using the superplasticizer. The optimum replacement ratio of zeolite mud stone was 10% on unit -cement amount. At these optimum replacement ratio, the strength development over the plain concrete was 34% for zeolite and 16% for mud stone. Through this study, we concluded the natural zeolite and mud stone were adequate admixture for the high-strengthening of concrete.

  • PDF

Experimental investigations on performance of concrete incorporating Precious Slag Balls (PS Balls) as fine aggregates

  • Sharath, S.;Gayana, B.C.;Reddy, Krishna R.;Chandar, K. Ram
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.239-246
    • /
    • 2019
  • Substitution of natural fine aggregates with industrial by-products like precious slag balls (PS Balls) offers various advantages like technical, economic and environmental which are very important in the present era of sustainability in construction industry. PS balls are manufactured by subjecting steel slag to slag atomizing Technology (SAT) which imparts them the desirable characteristics of fine aggregates. The main objective of this research paper is to assess the feasibility of producing good quality concrete by using PS balls, to identify the potential benefits by their incorporation and to provide solution for increasing their utilization in concrete applications. The study investigates the effect of PS balls as partial replacement of fine aggregates in various percentages (20%, 40%, 60%, 80% and 100%) on mechanical properties of concrete such as compressive strength, splitting tensile strength, and flexural strength. The optimum mix was found to be at 40% replacement of PS balls with maximum strength of 62.89 MPa at 28 days curing. Permeability of concrete was performed and it resulted in a more durable concrete with replacement of PS balls at 40% and 100% as fine aggregates. These two specific values were considered as optimum replacement is 40% and also the maximum possible replacement is 100%. Scanning electron microscope (SEM) analysis was done and it was found that the PS balls in concrete were unaffected and with optimum percentage of PS balls as fine aggregates in concrete resulted in good strength and less cracks. Hence, it is possible to produce good workable concrete with low water to cement ratio and higher strength concrete by incorporating PS balls.

Determining the Optimum Maintenance Period of the Steel Making Equipment Having Multiple Failure Types (다수의 고장유형을 갖는 제철설비의 최적 정비주기 산출)

  • Song, Hong-Jun;Jun, Chi-Hyuck
    • IE interfaces
    • /
    • v.16 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • The maintenance cost in K Steelworks has been continuously increased in proportion to the production cost. However, there seems to be a possibility of reducing cost through the optimization of maintenance actions. The failure types of the equipment in steelworks ate various with different failure cost. Thus the failure rate and cost of each type of failures should be considered simultaneously when the optimum maintenance period is to be determined. It is considered that the equipment undergoes periodic replacement and a specified number of incomplete preventive maintenance actions are performed during a replacement period. Assuming that the time to failure follows a Weibull distribution, the parameters of the failure rate are estimated using the maximum likelihood estimation. The optimal replacement period is determined to minimize the average cost per unit time. As the result of analysis it is suggested that the existing maintenance period for a hot-rolling equipment can be extended significantly.