• Title/Summary/Keyword: Optimum pressure ration

Search Result 2, Processing Time 0.018 seconds

Deposition of Epitaxial Silicon by Hot-Wall Chemical Vapor Deposition (CVD) Technique and its Thermodynamic Analysis

  • Koh, Wookhyun;Yoon, Deoksun;Pa, ChinHo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.173-176
    • /
    • 1998
  • Epitaxial Si layers were deposited on n- or p-type Si(100) substrates by hot-wall chemical vapor deposition (CVD) technique using the {{{{ {SiH }_{ 2} {Cl }_{2 } - {H }_{ 2} }}}}chemistry. Thermodynamic calculations if the Si-H-Cl system were carried out to predict the window of actual Si deposition procedd and to investigate the effects of process variables(i.e., the deposition temperature, the reactor pressure, and the source gas molar ratios) on the growth of epitaxial layers. The calculated optimum process conditions were applied to the actual growth runs, and the results were in good agreement with the calculation. The expermentally determined optimum process conditions were found to be the deposition temperature between 900 and 9$25^{\circ}C$, the reactor pressure between 2 and 5 Torr, and source gad molar ration({{{{ {H }_{2 }/ {SiH }_{ 2} {Cl }_{2 } }}}}) between 30 and 70, achieving high-quality epitaxial layers.

  • PDF

Investigation on Recuperative Cycle Gas Turbine Engine for Power Generation (발전용 가스터빈에서의 Recuperative 사이클 적용성 검토)

  • Kim SooYong;Son Ho-Jae;Goldenberg Victor
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.225-230
    • /
    • 2005
  • It is theoretically known that recuperator can bring a significant increase in thermal efficiency of the gas turbine unit, but it also has disadvantages such as pressure loss in the flow channel, thermal stress and increase in weight. Therefore it is necessary to consider all pros and cons of this equipment in view of economic aspects throughout its life cycle. Recuperator has been applied mostly in the power ranges of $20\sim300kW$ class industrial units but hasn't been used as a larger power generation unit except for naval applications in mid twentieth century. Present paper considered the applicability of a recuperator cycle in term of pressure loss, part load aspects for power generation purpose.

  • PDF