• Title/Summary/Keyword: Optimum mix ratio

Search Result 132, Processing Time 0.018 seconds

The Physical Properties of Polymer Concrete for Ultra Thin Bridge Deck Pavement (초박층 교면포장용 폴리머 콘크리트의 물리적 특성)

  • Kim, Hyeon Jun;Son, Yeong Hyo;Han, Bum Jin;Jung, Ji Eun;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.74-81
    • /
    • 2013
  • This research was performed to identify physical properties of polysulfide epoxy polymer concrete for ultra-thin bridge deck pavement, and improve domestic applicability. With the optimum mix ratio determined from mixing experiments of polymer concretes, compressive, flexural, and bond strength were tested to identify its strength properties along with the freezing-thawing resistance test to evaluate its durability in harsh environments. As a result, the tested polymer concretes showed excellent performance in strength and deflection characteristic and all tested strength satisfied the criteria of American Concrete Institute. Moreover, it had better performance under variable temperatures comparing to other existing pavement materials. By the results of freezing-thawing resistance test and strength measurement for specimens underwent the freezing-thawing process, it can be judged that there is no such problem to the concrete's durability. In conclusion, the newly developed polymer concrete in this research has appropriate properties for use in ultra-thin pavement on bridge deck, and moreover it has superior applicability in comparison with former materials due to its improved temperature sensitivity.

A Study on the Basic Properties of Polymer Cement Mortar Using SBR Latex with Blast-Furnace and Fly Ash (폴리머 디스퍼전 SBR과 고로슬래그 미분말 및 플라이애시를 사용한 폴리머 시멘트 모르타르의 기초적 성질에 관한 연구)

  • Kim, Wan-Ki;Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • The purpose of this study is to evaluate the improvement of flow, compressive and flexural strengths of polymer cement mortar(PCM) using SBR latex mixed with blast-furnace slag and fly ash. The test specimens were prepared with SBR polymer dispersion, two types of admixture (blast-furnace slag and fly ash), five polymer-cement ratios (P/C; 0, 5, 10, 15 and 20%), and six admixture contents (0, 3, 5, 10, 15 and 20%), plain cement mortar was also made for comparison. From the test results, the flow of PCM was significantly improved compared to ordinary cement mortar, but the flow was slightly reduced when mixed with blast-furnace slag, and the flow was similar to PCM when mixed with fly ash. In addition, the compressive strength of PCM mixed with admixtures was significantly improved, but the flexural strength did not improve except for some mortars. It can be stated that the optimum mix proportions of PCM using SBR with admixture contents 10 to 15% and P/C 10% for the compressive strength improvement, and P/C 20% for flexural strength improvement are recommended respectively in this study.