• 제목/요약/키워드: Optimum mix proportions

검색결과 62건 처리시간 0.024초

수화열 해석프로그램을 이용한 기초 매스콘크리트의 사전 배합선정 및 수화열 검토 (Study on Hydration Heat and Contact the Mix-Design of Foundation Mass Concrete Using Hydration Temperature Analysis Program)

  • 설준환;조만기;방홍순;김옥규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.105-106
    • /
    • 2019
  • In this research, considering the practical conditions at field, thermal cracking method was suggested based on the comparative analysis between predicted value and actual value obtained from the actual structure member with optimum mix design. The optimum mix design was deduced from the various mix designs with various proportions of cementitious binder for upper and lower placement lifts of mat-foundation mass concrete. Therefore, it can be stated that applying low heat mix design and different heating technique between upper and lower placement lifts for mass concrete are efficient to control the thermal cracking. As future issues, based on the interpretation result value, we will select the optimal combination that is applied specifically to the actual site, and deeply analyze the correlation between the measured value and the analysis value through the combination and the test of the actual structure.

  • PDF

순환골재를 이용한 콘크리트의 배합설계에 관한 연구 (A Study on Design of Mix Proportion for Concrete using Recycled Aggregate)

  • 박원준;노구치 타카후미
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.101-103
    • /
    • 2011
  • Various desired performances of concrete cannot be always obtained by current conventional mix proportion methods for recycled aggregate concrete (RAC). This paper suggests a new design method of mix proportion for RAC to reduce the number of trial mixes using genetic algorithm (GA) which has been an optimization technique to solve the multi-object problem. In mix design method by GA, several fitness functions for the required properties of concrete, i.e., slump, strength, price, and carbonation speed coefficient were considered based on conventional data or fitness function. As a result, various optimum mix proportions for RAC that meet required performances were obtained and the risk evaluation was also conducted for selected mixtures.

  • PDF

폴리머 시멘트 콘크리트의 배합조건이 투수성능과 역학적 성질에 미치는 영향 (Effect of Mix Proportions on the Permeability and Mechanical Properties of Polymer Cement Concrete)

  • 박응모;조영국;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.356-361
    • /
    • 1998
  • Permeable polymer cement concrete in this study is one of the invironment conscious concretes that can be applied at roads, side walks, parking lots, interlocking block and river embankment, etc. In this study, permeable polymer cement concretes using polymer dispersion(St/Ac) with water-cement ratios of 25, 30, 35 and 40%, polymer-cement ratios of 0, 5, 10, 15 and 20%, and a ratio of cement to aggregate (by weight), 1 : 3.5(about 415kg/㎥), 1 : 4.0(about 375 kg/㎥), and 1 : 4.5(about 345kg/㎥) are prepared, and tested for compressive, flexural and tensile strength, and permeability. From the test results, increase in the strengths of permeable polymer cement concrete are clearly observed with increasing polymer-cement ratio, we can obtain the maximum strengths at water-cement ratio of 35%. The optimum permeable polymer cement concrete according to application and location of work can be selected in various mix proportions.

  • PDF

농업용 콘크리트 구조물을 위한 라텍스 개질 보수용 모르타르의 적정 배합비 도출 (Optimum Mix Proportion of Latex Modified Repair Mortar for Agricultural Concrete Structures)

  • 원종필;이재영;박찬기;박성기
    • 한국농공학회논문집
    • /
    • 제49권2호
    • /
    • pp.37-46
    • /
    • 2007
  • The service life of agricultural concrete structures is designed in about 30 to 100 years, but actual service lift is estimated in an average 18 years. Therefore, as the service life of the agricultural concrete structures increases, necessity of repair by aging from various environment condition exposure increases. This study was to determinate the optimum mix proportion of latex modified repair mortar and to improve the durability performance of agricultural concrete structures. The physical and mechanical tests of latex modified repair mortar were performed. Tests of flow, compressive strength, flexural strength and bond strength tests were conducted. Test results show that the optimum nex proportion of latex modified repair mortar, when used in 5% latex volume fraction (weight of cement), 1.5% antifoaming agent (weight of latex), 0.2% PVA fiber volume fraction, 1:2 (binder-sand ratio), 10% silica fume replacement ratio (weight of cement), could result in best performance for the repair of agricultural concrete structures.

Genetic algorithm in mix proportion design of recycled aggregate concrete

  • Park, W.J.;Noguchi, T.;Lee, H.S.
    • Computers and Concrete
    • /
    • 제11권3호
    • /
    • pp.183-199
    • /
    • 2013
  • To select a most desired mix proportion that meets required performances according to the quality of recycled aggregate, a large number of experimental works must be carried out. This paper proposed a new design method for the mix proportion of recycled aggregate concrete to reduce the number of trial mixes. Genetic algorithm is adapted for the method, which has been an optimization technique to solve the multi-criteria problem through the simulated biological evolutionary process. Fitness functions for the required properties of concrete such as slump, density, strength, elastic modulus, carbonation resistance, price and carbon dioxide emission were developed based on statistical analysis on conventional data or adapted from various early studies. Then these fitness functions were applied in the genetic algorithm. As a result, several optimum mix proportions for recycled aggregate concrete that meets required performances were obtained.

폴리머 디스퍼션을 이용한 프리팩트 콘크리트용 주입 모르타르의 배합에 관한 연구 (Mix Design of Polymer Grouting Mortar for Prepacked Concrete Using Polymer Dispersions)

  • 조영국;김완기
    • 한국건축시공학회지
    • /
    • 제8권5호
    • /
    • pp.85-91
    • /
    • 2008
  • Prepacked concrete has recently been used in the special constructions fields such as underwater concrete work, heavy-weight concrete work, underground structure work, partial repair works for damaged reinforced concrete structures. and polymer-modified mortars have been employed as grouting mortars for the prepacked concrete. The purpose of this study is to recommend the optimum mix design of polymer-modified grouting mortars for prepacked concrete. Polymer-modified mortars using SBR and EVA emulsions as admixture of grouting mortars for prepacked concrete are prepared with various mix proportions such as sand-binder ratio, fly ash replacement ratio, polymer-binder ratio. and tested for flowability, viscosity of grouting mortars, bleeding ratio, expansion ratio, flexural and compressive strengths of grouting mortars and compressive and tensile strengths of prepacked concretes. From the test results, it is apparent that polymer-modified mortars can be produced as grouting mortars when proper mix design is chosen. We can design the mix proportions of high strength mortars for prepacked concrete according to the control of mix design factors such as type of polymer, polymer-binder ratio, sand-binder ratio and fly ash replacement ratio. Water-binder ratio of plain mortars for a constant flowability value are in the ranges of 43% to 50%. SBR-modified mortar has a little water-binder ratios compared to those of plain mortar, however, EVA-modified mortar needs a high water-binder ratio due to a high viscosity of polymer dispersion. The expansion and bleeding ratios of grouting mortars are also controlled in the proper value ranges. Polymer-modified grouting mortars have good flexural. compressive and tensile strengths, are not affected with various properties with increasing fly ash replacement to cement and binder-sand ratio. In this study, SBR-modified grouting mortar with a polymer-binder ratio of 10% or less, a fly ash replacement of 10% to cement and a sand-binder ratio of 1.5 is recommended as a grouting mortar for prepacked concrete.

고로슬래그 미분말을 사용한 고유동 수중불분리성 콘크리트의 최적배합비 도출 (Optimum Mix Proportions of High Fluidity Antiwashout Underwater Concrete Using Ground Granulated Blast Furnace Slag)

  • 김성욱;박정준;배수호;박재임
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3704-3712
    • /
    • 2012
  • 최근, 장대교량의 해상기초 구조물에 수중불분리성 콘크리트의 사용이 증가되고 있다. 그러나, 해상기초 구조물에 사용되는 수중불분리성 콘크리트의 공사기간을 단축시키기 위해서는 이전의 수중불분리성 콘크리트보다 유동성을 크게 개선시키는 고유동 수중불분리성 콘크리트의 제조가 필요하다. 따라서 본 연구의 목적은 해상기초 구조물에 사용되는 고유동 수중불분리성 콘크리트의 최적배합비를 도출하는 것이다. 이를 위하여 단위결합재량 550, 600kg/$m^3$ 각각에 대해서 수중불분리성 혼화제 첨가량별로 고로슬래그 미분말을 혼입한 콘크리트를 제작하였다. 제작된 콘크리트의 슬럼프 플로, 응결시간, 수중분리저항성 및 압축강도 비와 같은 품질성능을 관련 규격에 따라 평가하였다. 결국, 고로슬래그 미분말을 혼입한 고유동 수중불분리성 콘크리트는 관련 규격을 만족시키는 수중불분리성 혼화제의 최소 첨가량이 필요한 것으로 나타났다.

플라이애쉬의 치환율에 따른 고강도 자기충전 콘크리트의 특성 (Properties of the high strength and self-compacting concrete according to the replacement ratio of fly ash)

  • 권영호;이현호;이화진;하재담
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.85-88
    • /
    • 2006
  • This study describes the optimum mix proportion of the high strength and self-compacting concrete placed in main structures of LNG above tank. This concrete requires high strength level about $60{\sim}80MPa$, low hydration heat, balance between workability and consistency without vibrating in the actual work. For this purpose, low heat portland cement and fly ash are selected and design factors including water-binder ratio, replacement ratio of fly ash are tested. As experimental results, low heat portland cement shows lower the confined water ratio than another cement type and the optimum replacement ratio of fly ash in order to improve properties of the binder-paste shows 10% by cement weight considering test results of the confined water ratio$({\beta}p)$. Also, flowability of the high strength and self-compacting concrete by using fly ash about $10{\sim}20%$ is improved. The replacement ratio of fly ash 10% and water-binder ratio $25{\sim}27%$ are suitable to the design strength 80MPa and cost, In case of the design strength 60MPa, the replacement ratio of fly ash and water-binder ratio show 20% and $25{\sim}30%$ separately. Based on the results of this study, the optimum mix proportions of the high strength and self-compacting concrete will be applied to the construction of LNG above tank as a new type.

  • PDF

섬유보강 플라이애쉬.석고.복합체의 역학적특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties of Fiber Reinforced Fly Ash.Lime.Gypsum Composites)

  • 박승범
    • 콘크리트학회지
    • /
    • 제5권4호
    • /
    • pp.145-155
    • /
    • 1993
  • 본 연구는 섬유보강 플라이애쉬$\cdot$석회$\cdot$석고 복합체의 역학적 특성을 실험적으로 구명하고, 그 제조방법을 제시한 것이다. 플라이애쉬$\cdot$석회$\cdot$석고 복합체는 PAN계 및 Pitch계 탄소섬유, 내알카리성 유리섬유와 폴리머 분산제를 사용하여 제조하였고, 배합조건별로 그 특성을 검토하였다. 연구결과, 플라이애쉬$\cdot$석회$\cdot$석고 복합체의 제조를 위한 소요서의 컨시스턴시와 강도를 얻기 위한 최적배합을 제안하였다. 또한, 섬유보강 플라이애쉬 석회 석고 복합체의 휨강도 및 휨인성은 섬유의 종류에 관계없이 섬유혼입율의 증대에 따라 현저히 개선되었으며, 압축강고는 섬유혼입율보다는 점유의 종류에 따라 크게 영향을 받았다. 한편, 폴리머 분산제를 혼입한 PAN계 탄소섬유보강 플라이애쉬$\cdot$석회$\cdot$석고 복합체의 비중은 폴리머 분산제의 혼입에 의해 크게 감소하였고, 동복합체의 압축강도, 휨강도 및 휨인성은 폴리머에 의한 영향은 거의 없고 섬유혼입율은 증대에 따라 현저히 개선되는 것으로 나타났다.

다량의 플라이애쉬를 사용한 고유동충진재의 배합설계를 위한 실험적 연구 (An experimental study on mix design for flowable fill with high volume fly ash content)

  • 원종필;신유길
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.130-135
    • /
    • 1998
  • This paper presents results of research performed to identify optimum mix proportions for production of flowable fill with high volume fly ash content. The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. Tests were carried out on concrete designed to have 10 ~ 15kg/$\textrm{cm}^2$ compressive strength at the 28-day age with fly ash contents of approximately 280kg/㎥. Slump was held at 25$\pm$1cm for all mixtures produced compressive strengths at 28 days were found to range from 5.03 to 13.69kg/$\textrm{cm}^2$.

  • PDF