• Title/Summary/Keyword: Optimum method

Search Result 6,688, Processing Time 0.028 seconds

A Study on Decision of Optimum Installed Reserve Rate using Probabilistic Reliability Criterion (확률론적인 신뢰도기준에 의한 적정설비예비율의 결정에 관한 연구)

  • Park, Jeong-Jae;Choi, Jae-Seok;Yun, Yong-Bum;Jung, Young-Bum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1318-1326
    • /
    • 2008
  • This paper proposes an alternative methodology for deciding an optimum deterministic reliability level (IRR; Installed Reserve Rate) by using probabilistic reliability criterion (LOLE; Loss of Load Expectation). Additionally, case studies using the proposed method induce the characteristics of relationship between the probabilistic reliability index (LOLE) and deterministic reliability index (IRR) for 2008 and 2010 years in Korea power system. The case study presents a possibility that an optimum IRR level in Korea can be assessed using the proposed method. Korea power system has been using the LOLE criterion to determine the adequacy of installed capacity (ICAP) requirement. The criterion in Korea is that the loss of load expectation shall not exceed the available capacity more than five day in ten years (=0.5[days/year]), The probabilistic reliability evaluation and production cost simulation program which is called PRASim is used in order to evaluate the relationship and optimum IRR in this paper.

Determination of Optimum Heating Regions for Thermal Prestressing Method Using Artificial Neural Network (인공신경망을 이용한 온도프리스트레싱 공법의 적정 가열구간 설정에 관한 연구)

  • 김상효;김준환;김강미
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.327-334
    • /
    • 2003
  • Thermal Prestressing Method for continuous composite girder bridges is a new design and construction method developed to induce initial composite stresses in the concrete slab at negative bending regions. Due to the induced initial stresses, prevention of tensile cracks at concrete slab, reduction of steel girder section, and reduction of reinforcing bars are possible. Thus, economical and construction efficiency can be improved. Method for determining optimum heating region of Thermal Prestressing Method, has not been established although such method is essential for increasing efficiency of the designing process. Trial-and-error method used in previous studies is far from efficient and more rational method for computing optimal heating region is required. In this study, efficient method for determining optimum heating region in the use of Thermal Prestressing Method is developed based on artificial neural network algorithm, which is widely adopted to pattern recognition, optimization, diagnosis, and estimation problems in various fields. Back-propagation algorithm, which is commonly used as a learning algorithm in neural network problems, is used for training of the neural network. Through case studies of 2-span continuous and 3-span continuous composite girder bridges using the developed process, the optimal heating regions are obtained.

  • PDF

Shape Optimum Design of Cantilever with Weight and Journal Bearing Cap (자중을 고려한 외팔보와 저널 베어링 덮개의 형상 최적설계)

  • Lim, O-Kang;Lee, Jin-Suk;Cho, Heon;Lee, Byung-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.427-435
    • /
    • 1999
  • In the field of shape optimum design, much efforts are needed in regridding method and shape design sensitivity analysis. In this paper, Bezier curve is used to make the boundary of a structure and the improved direct differentiation method is used to calculate the shape design sensitivity. To regrid the finite element model, modified displacement field is presented in this paper. The modified displacement field makes more fine grid at large curvature. The purpose of this paper is to obtain the optimum shape of a cantilever with weight and a 3-dimensional journal bearing cap.

  • PDF

Shape Optimization of Arches (아치구조의 형상 최적화)

  • Han, Sang Hoon;Byun, Keun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.127-135
    • /
    • 1984
  • This paper considers the problem of optimum shaping of steel arches subjected to general loading. The weight of arches is considered as the objective function and the appropriate combinations of section forces, material volume, arc length, and closed section area of arches are considered as the stress constraints. The shape optimization problems are formulated in terms of the design variables of sectional areas of each element. First the cost sensitivity of the design is investigated. Then the investigation comprises the search for the optimum arch form as well as the optimum area distribution along the arch. Two spaces of shape optimization algorithm will be treated, the first space corresponding to the section optimization by the Modified Newton Raphson Method, and the second space to the coordinate optimization by the Powell Method. The optimization algorithm is evaluated and the optimum span-rise ratios for the given arches are evaluated.

  • PDF

Simple Determination Method on Optimal Dosage of Polymer for Papermaking Wastewater Treatment (제지폐수처리의 고분자 응집제 주입량 간이 결정법)

  • Cho, Jun-Hyung;Kang, Mee-Ran;Jin, Hai-Lan
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.85-90
    • /
    • 2014
  • Dewaterability, one of the important properties of wastewater sludge, was investigated using a simple capillary suction time (CST) measurement method. CST and SRF have a very close co-relation. It was convinced that CST method was quite effective, and compensating the time-consuming SRF of conventional drainage measuring method. It turned out that one could use the results of CST to find optimum flocculants ratio to improve drainage in wastewater treatment for the tissue paper production at a mill. Since the optimum ratio of flocculants could be determined with the value of CST and COD removal efficiency could be improved with precise ratio of flocculants. Thus, using CST for determining the optimum ratio of flocculants could be economical by reducing the amount of flocculants. Dewaterability might be measured within several seconds using the values of CST in a precise way. The dewaterability could also be useful in investigating the optimum ratio of flocculants.

Determination of Optimum Blank Shape to Minimize the Root Gap during TIG Welding in Hot Curvature Forming of Al5083 Thick Plate (열간 곡면성형된 Al5083 후판의 TIG 용접 시 루트갭 최소화를 위한 최적 블랭크 형상 결정)

  • Lee, Jeong Min;Ko, Dae Hoon;Lee, Kyung Hun;Lee, Chan Joo;Kim, Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.815-823
    • /
    • 2013
  • The hot curvature forming of large aluminum plates is a process used to produce spherical liquefied natural gas (LNG) tanks. In this study, we describe a method to determine the optimum shape of blanks to minimize the root gap in the forming process. The method proposed in this study was applied to a small-scale model for thick plates with a curvature of 1500 mm and thickness of 6 mm. First, the shape of the curved shells was determined as the target shape, and then a coordinate transform was used to determine the optimum blank shape, which was then iteratively modified using the results of finite element method (FEM) simulations, including heat transfer, until the shape error was minimized. Experiments in forming using Al5083 thick plate were carried out, showing that the method can determine the optimum blank shape within an allowable root gap of 0.1 mm.

Optimum Design of a Pin-Fins Type Heat Sink Using the CFD and Mathematical Optimization

  • Park, Kyoung-Woo;Oh, Park-Kyoun;Lim, Hyo-Jae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2005
  • The shape of $7\times7$ pin-fins heat sink is optimized numerically to obtain the minimum pressure drop and thermal resistance. In this study, the fin height (h), fin width (w), and fan-to-heat sink distance (c) are chosen as the design variables and the pressure drop $({\Delta}P)$ and thermal resistance $(\theta_j)$ are adopted as the objective functions. To obtain the optimum design values, we used the finite volume method for calculating the objective functions, the BFGS method for solving the unconstrained non-linear optimization problem, and the weighting method for predicting the multi-objective problem. The results show that the optimum design variables for the weighting coefficient of 0.5 are as follows: W=4.653 mm, h=59.215mm, and c=2.667mm. The objective functions corresponding to the optimal design are calculated as ${\Delta}P=6.82$ Pa and $(\theta_j)=0.56K/W$. The Pareto solutions are also presented for various weighting coefficients and they will offer very useful data to design the pin-fins heat sink.

Robust and Optimum Weighted Stacking of Seismic Data (탄성파 자료의 강인한 최적 가중 겹쌓기)

  • Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Stacking in seismic processing plays an important role in improving signal-to-noise ratio and imaging quality of seismic data. However, the conventional stacking method doesn't remove random noises with various distributions and outliers up to a satisfactory level. This paper introduces a robust and optimum weighted stack method which shows both robustness to outlier noises and optimum in removing random noises. This was achieved by combining the robust median stacking with the optimum weighted stacking using local correlation. Application of the method to synthetic data showed that the proposed method is very effective in suppressing random noises with various distributions including outliers.

Study on Optimum Modification Method of Dynamic Charcteristics of Ship Structures by Multi-level Optimization (다단계최적화방법에 의한 선박구조물의 동특성의 최적변경법에 관한연구)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.574-582
    • /
    • 1999
  • This paper discusses the multi-level optimization method in dynamic optimization problems through stiffened plate of ship structures. In structural optimization the computational cost increases rapidly as the number of design variables increases. And we need a great amount of cal-culation and time on problems of modified dynamic characteristics of large and complicated struc-tures. In this paper the multi-level optimization is proposed which decreases computational time and cost. the dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. The way to apply the multi-level optimization methods in this study follow: In the first step the dynamic characteristics is controlled for the two-dimensional model of stiffened plate by sensitivity analysis and quasi-least squares methods. In the second step the cross-section of the stiffener is decided so that the weight is minimized under needed constraints by the steepest descent or ascent method. In the third the three-dimensional model is made based on the results of the first step and the second step confirmation and finer tuning of the objective function are carried out. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

The effect of propolis concentration on the antibacterial activity (프로폴리스 농도가 항균활성에 미치는 영향)

  • Kim, Byoung-Moon;Song, Kun-Ho;Lee, Kwang-rae
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.161-167
    • /
    • 2007
  • The objetives of this study are to set up optimum extraction temperature, time and organic solvent for propolis extraction, to investigate chemical properties, and to develop health foods from propolis preparation. In this study, ethanol and ultrasonic extracts method performed to optimum extraction temperature was at 60, $20^{\circ}C$, optimum extraction time was at 12, 4 hours and optimum extraction amount of solvent was at 20, 15 times of propolis weight. When various ethanol solutions were used, whereas flavonoid content was highest in 70, 80% aqueous ethanol, respectively. So the ultrasonic extracts method used gave better results than the ethanol extracts method in this work. Extraction of propolis with etanol and ultrasonic extracts method was performed by using the water and various concentrations of aqueous ethanol as solvent. Sensitivity of propolis samples to Staphylococcus aureus was investigated and the results were shown. Samples of water extract did not inhibit microbial growth, where as 50% aqueous ethanol extract the largest inhibitory zone for Staphylococcus aureus, then decreased inhibition with increasing ethanol concentrations.

  • PDF