• Title/Summary/Keyword: Optimum integrated management system

Search Result 32, Processing Time 0.035 seconds

A Design of Air Compressor Remote Control System Using USN Technology (USN 기술을 이용한 공기압축기 원격관리 시스템 설계)

  • Hwang, Moon-Young
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Compressed Air is an important energy source used in most factories nowadays. The automation trend using air compressor has been gradually increasing with the interest of the 4th industry in recent years. With the air compressor system, it is possible to construct the device at low cost and easily achieve automation and energy saving. In addition, With trend of FA, miniaturation and light weight manufacturing trend expand their use in the electronics, medical, and food sectors. Research method is to design the technology for the remote control of the following information as USN base. Development of flexible sensing module from real time observation module for fusion of IT technology in compressed air systems, design and manufacture of flexible sensing module, and realiability assessment. Design of real-time integrated management system for observation data of compressed air system - Ability to process observation data measured in real time into pre-processing and analysis data. This study expects unconventionally decreasing effect of energy cost that takes up 60~70% of air compressor layout and operation and maintenance management cost through USN(Ubiquitous Sensor Network) technology by using optimum operational condition from real time observation module. In addition, by preventing maintenance cost from malfunction of air compressor beforehand, maintenance cost is anticipated to cut back.

The Integrated Design and Analysis of Manufacturing Lines (II) - Continuous Design, Analysis and Optimization through Digital Virtual Manufacturing (제조라인 통합 설계 및 분석(II) - 디지털 가상생산 기술 적용을 통한 지속적인 라인 설계, 분석 및 최적화 프로세스)

  • Choi, SangSu;Sung, Nakyun;Shin, Yeonsik;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.148-156
    • /
    • 2014
  • Generally, over 95% of manufacturing cost is determined in the design and manufacturing preparation step, especially a great part of productivity is determined in the manufacturing preparation step. In order to improve the manufacturing competitiveness, we have to verify the problems that can be occurred in the production step and remove the unnecessary factors in the manufacturing preparation step. Thus, manufacturing industries are adopting digital manufacturing system based on modeling & simulation. In this paper, we introduce e-FEED system (electronic based Front End Engineering and Design) that is the integrated design and analysis system for optimized manufacturing line development based on simulation automation and explain the work process (Design, Analysis and Optimization) about manufacturing line development using e-FEED system. Also, the effect is described through the real implementation cases.

Multiple Ant Colony System (MACS) for the Dynamic Sectorization in Microcellular System (마이크로셀룰러 시스템에서 동적 섹터결정을 위한 MACS)

  • Kim, Sung-Soo;Hong, Soon-Jung;Ahn, Seung-Bum
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • The mobile communication network has to offer good quality of services (QoS), high capacity, and more coverage at a lower cost. However, with the increase of cellular user, the shortage of capacity due to unbalanced call distribution and lack of QoS are common. This paper deals with dynamic sectorization for efficient resource management to solve load unbalancing among microcells in CDMA (Code Division Multiple Access) microcellular system. Dynamic load balancing can be effected by grouping micro-cells properly and grouping can be developed through a routing mechanism. Therefore, we use ants and their routes to choose the optimum grouping of micro-cells into sectors using Multiple Ant Colony System (MACS)in this paper.

Analysis of Healthcare Quality Indicators using Data Mining and Development of a Decision Support System (데이터마이닝을 이용한 의료의 질 측정지표 분석 및 의사결정지원시스템 개발)

  • Kim, Hye Sook;Chae, Young-Moon;Tark, Kwan-Chul;Park, Hyun-Ju;Ho, Seung-Hee
    • Quality Improvement in Health Care
    • /
    • v.8 no.2
    • /
    • pp.186-207
    • /
    • 2001
  • Background : This study presented an analysis of healthcare quality indicators using data mining and a development of decision support system for quality improvement. Method : Specifically, important factors influencing the key quality indicators were identified using a decision tree method for data mining based on 8,405 patients who discharged from a medical center during the period between December 1, 2000 and January 31, 2001. In addition, a decision support system was developed to analyze and monitor trends of these quality indicators using a Visual Basic 6.0. Guidelines and tutorial for quality improvement activities were also included in the system. Result : Among 12 selected quality indicators, decision tree analysis was performed for 3 indicators ; unscheduled readmission due to the same or related condition, unscheduled return to intensive care unit, and inpatient mortality which have a volume bigger than 100 cases during the period. The optimum range of target group in healthcare quality indicators were identified from the gain chart. Important influencing factors for these 3 indicators were: diagnosis, attribute of the disease, and age of the patient in unscheduled returns to ICU group ; and length of stay, diagnosis, and belonging department in inpatient mortality group. Conclusion : We developed a decision support system through analysis of healthcare quality indicators and data mining technique which can be effectively implemented for utilization review and quality management in a healthcare organization. In the future, further number of quality indicators should be developed to effectively support a hospital-wide Continuous Quality Improvement activity. Through these endevours, a decision support system can be developed and the newly developed decision support system should be well integrated with the hospital Order Communication System to support concurrent review, utilization review, quality and risk management.

  • PDF

A Study on the SCM Capability Modeling and Process Improvement in Small Venture Firms (중소·벤처기업의 SCM역량 모델링과 프로세스 개선 방안에 관한 연구)

  • Lee, Seolbin;Park, Jugyeong
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • This study is empirically intended to put forward the modeling and process improvement measures for the SCM capability in small venture firms. The findings are summarized as follows. There were strategic alliance, technological development and centralization in the modeling of strategic planning for supply chain, not the least of which is strategic alliance, followed by centralization and technological development. There were routing scheduling, network integration and third party logistics outsourcing in decision making, not the least of which was network integration. There were customer service management, productivity management and quality management in management control, not the least of which was quality management. And there were order management choice, pricing demand, shipment delivery and customer management in transaction support system, not the least of which was order management choice. As for the above-mentioned findings, to maximize the SCM capability and operate the optimized process in small venture firms, the existing strategic alliances can optimize the quality management and stabilize the transaction support system through the network sharing and integration from the perspective of relevant organizational members' capability and process improvement. And the strategic linkage between firms can maximize the integrated capability of information system beyond the simple exchange relation between electronic data, achieving a differentiated competitive advantage. Consequently, the systematization and centralization for the maximization of SCM capability, including the infrastructure construction based on the system compatibility and reliability for information integration, should be preceded before the modeling of the integrated capability for optimum supply chain and the best process management in the smart era.

A Review of Instrumentation System and Construction of Korea Highway Test Road (시험도로 건설과 계측시스템 구축)

  • 최준성;김도형;김성환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.603-606
    • /
    • 2000
  • The cost needed for the construction and management of highways in the whole nation is rapidly growing so the research that can decrease the cost is required. However, most of the highway specs have simply converted from those of other countries, including USA. Therefore, some of our design and construction specs were not the optimum ones based on our own situation, requiring a research under the actual traffic and environment of our nation. The use of test road develops many aspects of highway engineering. Those are evaluation of construction materials, a general overview of korea pavement design and serviceability under the actual traffic and environmental condition of the nation. It is also economical and efficient compared to the trial construction of each item in spreaded form. A test road, 7.7km long with two lanes, is being constructed on the Inner Central Expressway. In this test road, 2.7km is planned for asphalt pavement and 3.4km is planned for concrete pavement. Three test bridges and five earth retaining structures will be included in the test road. Based on the master plan, the major performance was progressing such as detailed research modules of each area, preliminary research for the future research, sensor surveys for the behavior analyses of pavements and structures with installation methods and data acquisition systems, the foundation research of Integrated Instrumentation System and the Management Plan for automated measurement. Some area(structure research division, geotechnical research division) was designed the instrumentation plan because some instrument sensors must be installed during the construction of the test road. And then the instrumentation plan of each area was enforcing because a large majority of the instrument sensors must be installed after the construction of the test road. The field surveys with material property tests and pilot instrumentation test with sensor tests was also performing in accordance with the construction in the field.

  • PDF

Analysis of Healthcare Quality Indicator using Data Mining and Decision Support System

  • Young M.Chae;Kim, Hye S.;Seung H. Ho
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.352-357
    • /
    • 2001
  • This study presents an analysis of healthcare quality indicators using data mining for developing quality improvement strategies. Specifically, important factors influencing the inpatient mortality were identified using a decision tree method for data mining based on 8,405 patients who were discharged from the study hospital during the period of December 1, 2000 and January 31, 2001. Important factors for the inpatient mortality were length of stay, disease classes, discharge departments, and age groups. The optimum range of target group in inpatient healthcare quality indicators were identified from the gains chart. In addition, a decision support system was developed to analyze and monitor trends of quality indicators using Visual Basic 6.0. Guidelines and tutorial for quality improvement activities were also included in the system. In the future, other quality indicators should be analyze to effectively support a hospital-wide continuous quality improvement (CQI) activity and the decision support system should be well integrated with the hospital OCS (Order Communication System) to support concurrent review.

  • PDF

Initial Ship Allocation for the Fleet Systematization (선단구성을 위한 초기배선)

  • 이철영;최종화
    • Journal of the Korean Institute of Navigation
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 1984
  • The economical property of a shipping enterprise, as well as other transportation industries, is determined by the difference between the freight earned and expense paid. This study can be regarded as a division of optimizing ship allocation to routes under the integrated port transport system. Fleet planning and scheduling require complicated allocations of cargoes to ships and ships to routes in order to optimize the given criterion function for a given forecast period. This paper deals with the optimum ship allocation problem minimizing the operating cost of ships in a shipping company. Optimum fleet operating for a shipping enterprise is very important, since the marine transportation is a form of large quantity transport requiring long-term period, and there is a strong possibility to bring about large amount of loss in operation resulting from a faulty ship allocation. Where there are more than one loading and discharging ports, and a variety of ship's ability in speed, capacity, operating cost etc., and when the amount of commodities to be transported between the ports has been determined, then the ship's schedule minimizing the operating cost while satisfying the transport demand within the predetermined period will be made up. First of all a formula of ship allocation problems will be established and then will be constructed to solve an example by the Integer Programming application after consideration of the ship's ability, supply and demand of commodity, amount of commodity to be transported, operating costs of each ship etc. This study will give good information on deciding intention for a ship oprator or owner to meet the computerization current with shiping management.

  • PDF

A NESTING APPROACH IN DISCRETE EVENT SIMULATION FOR INTEGRATING CONSTRUCTION OPERATION AND SCHEDULE MODELS

  • Chang-Yong Yi;Chan-Sik Park;Doo-Jin Lee;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.400-408
    • /
    • 2009
  • Simulation applications for analyzing the productivity of construction operations at operation level and project schedules at project level are crucial methods in project management. The application at two different levels should be very tightly linked to each other in practice. However, appropriate integration at the levels is not achieved in that existing systems do not support to integrate operation models into a schedule model. This paper presents a new approach named to Discrete Event Simulation-Nesting modeling approach, which supports not only productivity analysis at operation level but also schedule management at a project level. The system developed by the authors allows creating operation models at the operation level, maintaining them in operation model library, executing sensitivity analysis to find the behaviors of the operation models when different combination of resources are used as existing DES systems do. On top of the conventional functions, the new system facilitates to find the optimum solution of resource combinations which satisfy the user's interest by computing the hourly productivity and the hourly cost of the operation. By drag-and-dropping an operation model kept in the operation model library, the operation models are integrated into an activity of the schedule model. When a complete schedule model is established by nesting operation models into the schedule model, stochastic simulation based scheduling is executed. A case study is presented to demonstrate the new simulation system and verify the validity of the system.

  • PDF

Optimization of Robust Design Model using Data Mining (데이터 바이닝을 이용한 로버스트 설계 모형의 최적화)

  • Jung, Hey-Jin;Koo, Bon-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.99-105
    • /
    • 2007
  • According to the automated manufacturing processes followed by the development of computer manufacturing technologies, products or quality characteristics produced on the processes have measured and recorded automatically. Much amount of data daily produced on the processes may not be efficiently analyzed by current statistical methodologies (i.e., statistical quality control and statistical process control methodologies) because of the dimensionality associated with many input and response variables. Although a number of statistical methods to handle this situation, there is room for improvement. In order to overcome this limitation, we integrated data mining and robust design approach in this research. We find efficiently the significant input variables that connected with the interesting response variables by using the data mining technique. And we find the optimum operating condition of process by using RSM and robust design approach.