• Title/Summary/Keyword: Optimum cross-sectional area

Search Result 50, Processing Time 0.027 seconds

Analysis of HTS Current Lead with Variable Area (단면적 변화를 가지는 고온초전도체 전류도입선 해석)

  • 문성수;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.22-25
    • /
    • 2000
  • To improve the performance of high temperature superconducting current leads, variable cross-sectional area is considered. The cross-sectional area is varied as a function of current density to fix the safety factor along lead length. New integration method is devised to find optimum cross-sectional area distribution. New design of current lead has low heat leak into cryostat and less material than constant cross-sectional area leads. Conduction cooled lead is considered. The developed method is applied to Bi2223 current leads sheathed Ag-Au alloy.

  • PDF

Optimum Design of Multi-Stacking Current Lead Using HTS Tapes (고온초전도 테이프를 이용한 적층형 전류 도입선의 최적설계)

  • 설승윤;김민수;나필선
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2001
  • The optimum cross-sectional area profile of gas-cooled high-temperature superconductor(HTS) current lead is analyzed to have minimum helium boil-off rate. The conventional constant area HTS lead has much higher helium consumption than the optimum HTS lead considered in this study. The optimum HTS lead has variable cross-sectional area to have constant satiety factor. An analytical formula of optimum shape of lead and temperature profile are obtained. For multi-stacking HTS current leads, the optimum tape lengths and minimum heat dissipation rate are also formulated. The developed formulations are applied to the Bi-2223 material, and the differences between constant area, constant safety-factor, and multi-stacking current leads are discussed.

  • PDF

Optimal Design of Multi-Step Current Leads Using HTS Tapes (고온초전도 테이프를 이용한 다단 전류 도입선의 최적설계)

  • 김민수;나필선;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.84-88
    • /
    • 2001
  • The optimum cross-sectional area Profile of gas-cooled high-temperature superconductor (HTS) current lead is analyzed to have minimum helium boil-off rate. The conventional constant area HTS lead has much higher helium consumption than the optimum HTS lead considered in this study. The optimum HTS lead has variable cross-sectional area to have constant safety factor. An analytical formula of optimum shape of lead and temperature profile are obtained. For multi-step HTS current leads, the optimum tape lengths and minimum heat dissipation rate are also formulated. The developed formulations are applied to the Bi-2223 material, and the differences between constant area, constant safety-factor, and multi-step current leads are discussed.

  • PDF

Optimum design of prestressed concrete beams by a modified grid search method

  • Cagatay, Ismail H.;Dundar, Cengiz;Aksogan, Orhan
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.39-52
    • /
    • 2003
  • A computer program has been developed for the optimum design of prestressed concrete beams under flexure. Optimum values of prestressing force, tendon configuration, and cross-sectional dimensions are determined subject to constraints on the design variables and stresses. 28 constraints have been used including flexural stresses, cover requirement, the aspect ratios for top and bottom flanges and web part of a beam and ultimate moment. The objective function contains cost of concrete, prestressing force and formwork. Using this function, it is possible to obtain minimum cost design, minimum weight or cross-sectional area of concrete design and minimum prestressing force design. Besides the idealized I-shaped cross-section, which is widely used in literature, a general I-shaped cross-section with eight geometrical design variables are used here. Four examples, one of which is available in the literature and the others are modified form of it, have been solved for minimum cost and minimum cross-sectional area designs and the results are compared. The computer program, which employs modified grid search optimization method, can assist a designer in producing efficient designs rapidly and easily. Considerable savings in computational work are thus made possible.

A Study on Optimum design of Corrugated web girder using Eurocode (유로코드를 이용한 주름웨브보의 최적설계 연구)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 2012
  • This paper describes the structural design and optimization of sinusoidally corrugated web girder by using EUROCODE (EN 1993-1-5). The optimum design methodology and characteristics of the optimal cross-section are discussed. We investigate a shear buckling and the concerned standards for corrugated web and explain the equations to obtain a critical stress according to buckling type. In order to perform optimization, we consider an objective function as minimum weight of the girder and use the constraint functions as slenderness ratio and stresses of flanges as well as corrugated web and deflection. Genetic Algorithm is adopted to search a global optimum solution for this mathematical model. For numerical example, the clamped girder under the concentrated load is considered, while the optimum cross-sectional area and design variables are analyzed. From the results of the adopted example, the optimum design program of the sinusoidally corrugated web girder is able to find the suitable solution which satisfied a condition subject to constraint functions. The optimum design shows the tendency to decrease the cross-sectional area with the yielding strength increase and increase the areas with load increase. Moreover, the corrugated web thickness shows a stable increase concerning the load.

Optimization of an Automotive Disc Brake Cross-section with Least Thermal Deformation by Taguchi Method (최소 열변형을 위한 자동차 디스크 브레이크 단면형상의 다구찌기법 기반 최적설계)

  • Kim, Cheol;Ha, Tae-jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Optimum cross-sectional shape of an automotive disc brake was developed based on FEM thermal analyses and the Taguchi method. Frictional heat flux and convection heat transfer coefficients were first calculated using equations and applied to the disc to calculate accurate temperature distribution and thermal deformations under realistic braking conditions. Maximum stress was generated in an area with highest temperature under pads and near the hat of ventilated disc and vanes. The SN ratio from Taguchi method and MINITAB was applied to obtain the optimum cross-sectional design of a disc brake on the basis of thermal deformations. The optimum cross-section of a disc can reduce thermal deformation by 15.2 % compared to the initial design.

Minimum Heat Dissipation of HTS Current Lead Having Partial Current Sharing Region (일부 전류분류영역을 가짐으로서 최소 열손실을 갖는 초전도 전류도입선)

  • Seol, S.Y.;Her, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.131-136
    • /
    • 2001
  • In this paper, a high-temperature superconductor(HTS) current lead operating in current sharing mode is described. The minimum heat dissipation and the optimum safety factor(cross-sectional area) is obtained analytically for partial current sharing HTS leads. It is assumed that the current lead is in conduction cooled state, and the sheath material is the alloy of silver and gold. The reduced cross-sectional area results partial current sharing state, and consequently reduces conduction heat transfer, but the Joule heat generation is increased. The optimized HTS current lead is different from the conventional copper leads. In the copper leads, the minimum heat dissipation is obtained for the zero gradient of temperature at warm end. However, the temperature gradient at warm end is not zero when the HTS lead operates at minimum dissipation state.

  • PDF

Automated design of optimum longitudinal reinforcement for flexural and axial loading

  • Tomas, Antonio;Alarcon, Antonio
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.149-171
    • /
    • 2012
  • The problem of a concrete cross section under flexural and axial loading is indeterminate due to the existence of more unknowns than equations. Among the infinite solutions, it is possible to find the optimum, which is that of minimum reinforcement that satisfies certain design constraints (section ductility, minimum reinforcement area, etc.). This article proposes the automation of the optimum reinforcement calculation under any combination of flexural and axial loading. The procedure has been implemented in a program code that is attached in the Appendix. Conventional-strength or high-strength concrete may be chosen, minimum reinforcement area may be considered (it being possible to choose between the standards ACI 318 or Eurocode 2), and the neutral axis depth may be constrained in order to guarantee a certain sectional ductility. Some numerical examples are presented, drawing comparisons between the results obtained by ACI 318, EC 2 and the conventional method.

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

Combined Optimal Design of Structure-Control Systems by Sliding Mode Control (슬라이딩모드 제어 기법을 이용한 구조-제어 시스템의 통합 최적 설계)

  • Park, Jung-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.45-51
    • /
    • 2002
  • To achieve the lightweight and robust design of a structure, it is requested to design a structure and its control system simultaneously, which is called as the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as an example for the applying the optimum design method. An initial load and a time varying disturbance were applied at the free end of the beam. Sliding mode control was selected due to its insensitiveness to the disturbance compared with other modes. It is known that the sliding mode control is robust to the disturbance and the uncertainty only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane and the objective function of the optimum switching hyper plane was assumed to be the objective one of the control system. The total weight of the structure was treated as a constraint and the cross sectional areas of the beam were considered as design variables, which means a nonlinear programming problem. The sequential linear programming method was applied to solve it. As a result of the optimum design, the effect of attenuating vibrations has been improved obviously. Moreover, lightweight design of the structure became possible from the relationship of the weight of the structure and the control objective function.