• Title/Summary/Keyword: Optimum Traffic

Search Result 203, Processing Time 0.017 seconds

The Simulation for the Organization of Fishing Vessel Control System in Fishing Ground (어장에 있어서의 어선관제시스템 구축을 위한 모의실험)

  • 배문기;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.175-185
    • /
    • 2000
  • This paper described on a basic study to organize fishing vessel control system in order to control efficiently fishing vessel in Korean offshore. It was digitalized ARPA image on the fishing processing of a fleet of purse seiner in conducting fishing operation at Cheju offshore in Korea as a digital camera and then simulated by used VTMS. Futhermore, it was investigated on the application of FVTMS which can control efficiently fishing vessels in fishing ground. The results obtained were as follows ; (1) It was taken 16 minutes and 35 minutes to casting and hauling net in fishing processing respectively. The length of rope pulled by scout boat was 200m, tactical diameter in casting net was 340.8m, turning speed was 6kts as well. (2) The processing of casting and hauling net was moved to SW, NE as results of simulation when the current direction and speed set into NE, 2kts and SW, 2kts respectively. Such as these results suggest that can predict to control the fishing vessel previously with information of fishing ground, fishery and ship's maneuvering, etc. (3) The control range of VTMS radar used in simulation was about 16 miles. Although converting from a radar of the control vessel to another one, it was continuously acquired for the vector and the target data. The optimum control position could be determined by measuring and analyzing to distance and direction between the control vessel and the fleet of fishing vessel. (4) The FVTMS(fishing vessel traffic management services) model was suggested that fishing vessels received fishing conditions and safety navigation information can operate safely and efficiently.

  • PDF

Analysis of Consciousness and Model on Land for the Another use After Quarrying (채석장의 부지 활용에 대한 의식 및 모델 분석)

  • Park, Jae Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.387-394
    • /
    • 2012
  • The study was conducted to develop an effective forest resources use models for an alternate use of abandoned quarry by an attitude survey. According to the result of survey, a pessimistic view due to dust, noise pollution, and forest damage was 5% higher than an affirmative view by economic benefits from the development of quarry. The 42% of the respondents preferred the alternate use of abandoned quarry and the 25% of the respondents wanted an art and cultural space. The optimum size of alternate use was 5-10 ha (43%) with the requirement of nearby residents (32%). According to the SWOT analysis for abandoned quarry, the strength factors were an effective use of land, the content development of modern industrial inheritance + cultural and art fusion, attraction for nearby city and visitors, a harmony of beauty landscape and clean environment, and a sustainable increase of domestic and foreign visitors with the 5-day-work week. The opportunity factors were the improvement of traffic networks through KTX and local highway, the creation of the new growth engines with the establishment of artistic creation belts, the providing of unique cultural and art space through grafting of tour and education, the creation of local income through stone processed goods, and the vitalization of local development through eco-city. The weakness factors were a psychological remoteness and backwardness, and the weakness of staying tour infra. The threat factors were a poor financial support for sustainable development in nearby quarry and a modify of legal and institutional system for the alternated use of abandoned quarry. The developed restoration models for the alternate use in abandoned quarry are classified to a sculpture park, a waterfall and lake park, a rock-climbing, a sports park + forest park, a native botanical garden, a culture and art park, a complex park, a water storage site, a water storage site to extinguish forest fire, a geriatric hospital, an agricultural facility, and a school site types etc. The results suggest that the alternate use in the abandoned soil and stone quarry is needed to establish facility use models with consideration of user's preference.

Design of a Dual Band-pass Filter Using Fork-type Open Stubs and SIR Structure (포크 형태의 개방형 스터브 및 SIR 구조를 이용한 이중대역 대역통과 여파기의 설계)

  • Tae-Hyeon Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.252-264
    • /
    • 2023
  • This paper proposes a design of a dual-band band-pass filter that integrates a λg/2 open SIR structure, a transmission line, and a fork-type structure with symmetric and asymmetric open stubs. To obtain the dual-band effect, the proposed filter uses the SIR structure and adjusts the impedance ratio of the SIR structure. Therefore, the position of the harmonics of the filter is shifted through the adjustment of the impedance ratio, and this can obtain a double-band effect. In order to obtain the dual-band characteristics, the dual-band effect is obtained by inserting a open stub between the SIR structures with the SIR structure divided in half. In addition, the second frequency response is obtained by adjusting the length of the open symmetrical stub in the fork-shaped structure. The asymmetrical open stub in the fork form achieves optimum bandwidth by adjusting the length. Therefore, the first center frequency of the proposed band-pass filter is 5.896 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.13 dB and 33.6 dB. The second center frequency is 5.906 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.15 dB and 19.8 dB. The reason is that when the impedance ratio (Δ) is higher than 1, the position of the harmonic is shifted to a lower frequency band. However, if the impedance ratio (Δ) is lowered by one step, the position of harmonics will move to a higher frequency band. The function of the filter designed using these characteristics can be obtained from the measurement result. The proposed band-pass filter has no coupling loss and no via energy concentration loss because there is no coupling structure of input/output and no via hole. Therefore, system integration is possible due to its excellent performance, and it is expected that dedicated short-range communication (DSRC) system applications used in traffic communication systems will be possible.