• Title/Summary/Keyword: Optimum Performance

Search Result 3,672, Processing Time 0.032 seconds

A Study on the Improvement Strategies for Exhaust Performance in Commercial Kitchen Hoods (상업용 주방후드의 배기성능 개선방안에 관한 연구)

  • 박진철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.439-445
    • /
    • 2003
  • The purpose of this study is to suggest the improvement strategies for exhaust performance in composite kitchen hoods. The Exhaust only hood, the 2-way compensating hood and the 3-way compensating hood were selected, and the laboratory experiments were performed to compare the local exhaust efficiency and the indoor temperature distributions according to the variations of the hood type and supply/exhaust air velocity. The results of this study can be summarized as follows. The compensating hood has better performance than exhaust only hood in the aspect of local exhaust efficiency and temperature distribution. The 3-way compensating hood shows the best performance when the supply air velocity is about 2.7 m/s, and the 2-way compensating hood at the supply air velocity of 3.5 w/s. In the same exhaust rate condition, if the exhaust area of the hood is increased and therefore the exhaust velocity is lowered, the supply air velocity is also lowered to get the optimum performance. The optimum exhaust velocity range of the commercial kitchen hood which derived from this study is 0.48 ∼ 0.55 m/s.

Influence of Blade Row Distance on Performance and Flow Condition of Contra-Rotating Small-Sized Axial Fan

  • Shigemitsu, Toru;Fukutomi, Junichiro;Shimizu, Hiroki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.161-167
    • /
    • 2012
  • Small-sized axial fans are used as air coolers for electric equipment. There is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices. Therefore, higher rotational speed design is conducted, although, it causes the deterioration of the efficiency and the increase of noise. Then, the adoption of contra-rotating rotors for small-sized fans is proposed for the improvement of the performance. In the case of contra-rotating rotors, blade row distance between the front and the rear rotors influences on the performance and the noise. Therefore, it is important to clarify the optimum blade row distance between front and rear rotors. The performance curves of the contra-rotating small-sized axial fan under the condition of different blade row distances are shown and the blade row interaction between the front and the rear rotors are discussed by the numerical results. Furthermore, the optimum blade row distance of the contra-rotating small-sized axial fan is considered.

An Experimental Study on Performance of the Inertance Pulse Tube Refrigerator using a Small Compressor (소형 압축기를 이용한 관성관형 맥동관 냉동기의 성능 특성에 대한 실험적 연구)

  • Kim Hongseong;Jeong Sangkwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.552-559
    • /
    • 2005
  • This paper describes an experimental study on the inertance pulse tube refrigerator using a small compressor. The purpose of this experimental study is to identify the performance of the inertance pulse tube refrigerator for various operating conditions and to obtain the optimum configuration. The dead volume effect is verified by two experimental apparatuses with different dead volumes between the compressor and the aftercooler. The refrigerator of the smaller dead volume shows better performance. The influence of operating frequency and charging pressure on the performance of the refrigerator is experimentally investigated. Reducing the regenerator mesh size improves the performance of the refrigerator. Finally, the inertance pulse tube refrigerator has maximum cooling capacity at the specific combination of the pulse tube length and the inertance tube length. The loss analysis is used to analyze and predict the optimum condition of the pulse tube refrigerator.

Performance Evaluation of Routing Algorithms based on Optimum Transmission Range in Tactical MANETs (전술 MANET의 최적통달거리 기반 라우팅 알고리즘 성능 연구)

  • Choi, Hyungseok;Lee, JaeYong;Kim, ByungChul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.10-17
    • /
    • 2014
  • This paper presents an analytical method for finding the optimum transmission range in mobile ad hoc networks(MANETs). The results are particularly useful for the operation of military networks, as the transmission range affects the traffic throughput of user & routing traffic, delay, and frequency interference. When the conditions of tactical environment are applied in our simulations and the above-mentioned performances are analyzed, we find the OLSR protocol is more excellent. Plus, we compare the results of MANETs performance when applying optimum transmission range and the default transmission range(10km), and analyze the reasonability of the calculation of optimum transmission range proposed by this paper.

An Experimental Study on the Optimum Design of Sirocco Fan by Using Taguchi Method (다구찌 방법을 이용한 시로코 홴의 최적설계에 관한 실험적 연구)

  • Kim, Jang Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.761-768
    • /
    • 1999
  • This paper is studied to find the optimum condition of double-inlet Sirocco fan installed in an indoor PAC for low noise operation by the Taguchi method. The goal of this study is to obtain the best combination of each control factor which results in a desired flowrate of Sirocco fan with minimum variability. In this study, the parameter design of the Taguchi method is adopted for robust design by the dynamic characteristic analysis using orthogonal arrays and S/N ratios. The flowrate measurements are conducted by using a multiple-nozzle-type fan tester according to the orthogonal array L9($3^4$). The results of this study can be summarized as follows ; (i) The optimum condition of control factor is a set of where A is an inner to outer diameter ratio($D_1/D_2$), B is a width to outer diameter ratio($L/D_2$), C is a blade attachment angle(${\theta}$) and D is a number of blade(Z), (ii) The flowrate under the optimum condition satisfies the equation $y=0.0384{\cdot}M$ where M is a signal factor, namely number of revolution. The flowrate performance improves about 7.3% more largely as compared with the current condition, which results in about 35RPM reduction of number of revolution for the target flowrate $18.5m^3/min$, and (iii) The sensitivity analysis shows that the major factors in contribution to flowrate performance are A, B, and D ; the percentage contributions of each control factor are 44.01%(Z), 26.77%($D_1/D_2$) and 20.42%($L/D_2$).

Lubricating Performance of Polyalkylene Glycol and Polyolester Base Oils analyzed from the Model of Interaction between Environmentally adapted Polar base oils and Additive (TCP) (환경친화적인 극성기유와 첨가제(TCP)의 상호작용모델로부터 해석된 Polyalkylene glycol 및 Polyolester Base Oil의 윤활작용)

  • ;Masabumi Masuko
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • Environmentally adapted synthetic base oils of polyalkylene glycols (PAGs) and polyol esters (POEs) show a high polarity because of their functional groups containing oxygen atom. The lubricating performance of these polar base oils was investigated by using a four-ball tribometer under boundary lubrication condition. Four polyalkylene glycols and five polyol ester base oils were used as sample base oils of high polarity. A mineral oil (MO) and alkylnaphthalene (AN) were used as low polarity base oils. Tricrecylphosphate (TCP) was added to all the base oils, in the range of 10 mmol/L-2000 mmol/L, as an antiwear additive. All the TCP-for-mutated base oils showed optimum concentration characteristics for minimizing wear. The order of optimum concentration of all the base oils was in a good accordance with the order of relative stability of TCP in base oils. The interaction model on solvation between additive and different polar base oils can expect the stability order of TCP. Thus, the model on solvation can explain well the order of optimum concentration of all the base oils, by using the effect of polarity (dielectric constant, $\varepsilon$) and molecular size (molecular weight, MW) of them on stability of TCP in polar base oils. Finally, a good correlation of the optimum concentration for all the base oils was obtained when it was arranged as a function of C∝(M $W_{Base Oil}$/M $W_{TCP}$)$^{-2}$.71/.($\varepsilon$$_{Base Oil}$)$^{3.38}$ by these two parameters.s..

Error Performance of 16 QAM Signal with Optimum Threshold Detection and SC Diversity Techniques in Rician Fading Channel (Rician 페이딩 채널에서 최적검파 및 선택합성 다이버시티 기법을 도입한 16QAM 신호의 오율 특성)

  • 김언곤;고봉진;조성준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 1994
  • We have proposed the optimum threshold detection(OTD) technique of 16 QAM signal in the Rician fading channel and analyzed its error performance with and without the selective combining(SC) diversity technique. And we compared the error performance of OTD with that of conventional threshold detection(CTD). Having the SC diveresity reception, optimum threshold detection(OTD) technique proposed in this paper provides the performance improvement of 1.8~3.2 [dB] in CNR for fading depth K values ranging from 5 to 30 over CTD when the error rate is $10_5$. From the result of numerical analysis, we know that the proposed OTD technique is superior to CTD technique in the Rician fading channel and adoption of the SC diversity technique with the proposed OTD can be considered as a good countermeasure for the Rician fading.

  • PDF

Optimum Performance Analysis of KSR-III LRE (KSR-III 로켓엔진 최적성능 분석)

  • Ha, Seong-Up;Moon, Yoon-Wan;Ryu, Chul-Sung;Han, Sang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.80-87
    • /
    • 2004
  • To understand the each performance parameter correlation of flight type liquid-propellant rocket engine for KSR-III(Korea Sounding Rocket-III), the analysis of engine stand-alone combustion test results was carried out. Considering the variation of ablative material combustion chamber caused by erosion, linear regression analysis that ignores oxidizer/fuel ratio effect and two-variable 2nd-order polynomial regression analysis that considers oxidizer/fuel ratio change were performed. It can be described that linear regression analysis is simple and very practical method, and can predict the performance within 1% error inside analyzed region. And two-variable 2nd-order polynomial regression analysis can predict with very high accuracy inside region and shows that KSR-III engine's optimum oxidizer/fuel ratio for thrust(or specific impulse) is 2.22 and that for combustion chamber pressure(or characteristic velocity) is 2.17.

Simulation of Design Factor Effects on Performance of Vacuum System (진공시스템 성능에 대한 설계인자 영향 전산모사)

  • Kim, Hyung-Taek;Jeong, Kwang-Pil
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.405-413
    • /
    • 2007
  • Effect of design factors on the performance of vacuum system was simulated for optimum design of system. In this investigation, the feasibility of modelling mechanism for $VacSim^{Multi}$ simulator was proposed. Simulation results of pumping design factor showed the possibilities of simulation fore-study for the detailed design factors. Simulation of roughing pump presented the expected pumping behaviors based on the specifications of commercial pump. Application of booster pump exhibited the high pumping efficiency for middle vacuum range. Combinations of optimum backing pump for diffusion and turbo vacuum system were obtained. And, the characteristics of process application of both systems were also acquired.

Optimal design of Base Isolation System considering uncertain bounded system parameters

  • Roy, Bijan Kumar;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.19-37
    • /
    • 2013
  • The optimum design of base isolation system considering model parameter uncertainty is usually performed by using the unconditional response of structure obtained by the total probability theory, as the performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such cases, the interval analysis method is a viable alternative. The present study focuses on the bounded optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by bounded type system parameters. With this intention in view, the conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded optimization procedure and the optimum performance of the isolation system.