• Title/Summary/Keyword: Optimum Moisture Content

검색결과 619건 처리시간 0.033초

Antioxidant Activity of Heated Licorice (Glycyrrhiza uralensis Fisch) Extracts in Korea (열처리한 국산 감초추출물의 항산화활성)

  • Woo, Koan-Sik;Hwang, In-Guk;Noh, Young-Hee;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제36권6호
    • /
    • pp.689-695
    • /
    • 2007
  • Antioxidative activity and polyphenol contents of heated licorice in Korea extracted by ethyl.acetate (EtOAc) and ethyl.alcohol (EtOH) were evaluated at various heating temperatures (110, 120, 130, 140, and $150^{\circ}C$), times (1, 2, 3, 4, and 5 hr), and moisture contents (10, 20, 30, 40, and 50%). Maximum extraction yields of EtOAc extract was 10.9% at $130^{\circ}C$, 3 hr, and 50% moisture content and that of EtOH extract was 25.0% at $120^{\circ}C$, 2 hr, and 20% moisture content, whereas those of control were 0.8 and 15.8%, respectively. The highest total polyphenol content was 845.67 mg/100 g in EtOH extract at $120^{\circ}C$, 2 hr, and 20% moisture content (control: 277.00 mg/100 g). The antioxidative activity ($IC_{50}$) was the highest value of 0.53 mg/mL in EtOAc extract at $120^{\circ}C$, 2 hr, and 20% moisture content (control: 12.34 mg/mL). The highest ascorbic acid equivalent antioxidant activity value of 1,584 mg ascorbic acid (AA) eq was obtained from EtOAc extract at $120^{\circ}C$, 2hr, and 40% moisture content (control: 1,263 mg AA eq). Optimum heating conditions for the improvement of antioxidative activity of licorice in Korea was $120^{\circ}C$, 2 hr, and $20{\sim}40%$ moisture content.

Studies on the Effect of Water Content, Curing Temperature and Grain Size Distribution of Soils on Unconfined Compressive Strength of Soil-Cement Mixtures. (함수비, 양생온도 및 흙의 입도가 Soil-Cement의 압축강도에 미치는 영향에 관한 연구(I))

  • 김재영;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제19권1호
    • /
    • pp.4312-4322
    • /
    • 1977
  • In order to investigate the effect of the water content and the accelerated curing on the strength of the soil-cement mixtures, laboratory test of soil cement mixtures was performed at five levels of water content, four levels of accelerated curing temperatures, three levels of normal curing periods, and six levels of accelerated curing time. Also this study was carried out to investigate the effect of grain size distribution of 21 types of soils on the strength of soil-cement mixtures at four levels of cement content and three levels of curing time. The results are summarized as follows: 1. Optimum moisture content increased with increase of the cement content, but maximum dry density was changed ununiformly with cement content. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of cement content. 2. In molding the specimens with the optimum moisture content, the maximum strength appeared at the wet side of the optimum moisture content. 3. According to increase of curing temperature as 30, 40, 50, and 60$^{\circ}C$, unconiiend compressive strength of soil-cement mixtures increased, the rate of increase at the early curing period was large, and approximately 120 hours was suifficient to harden soil-cement mixtures completely. 4. The strength of soil-cement mixtures at the curing temperature of 10$^{\circ}C$ decreased at the rate of 30 to 50 percent than at the curing temperature of 20$^{\circ}C$, and the strength of soil-cement mixtures at the curing temperature of 0$^{\circ}C$ increased a little with increase of curing time. 5. Although the strength of soil-cement mixtures seemed to be a little affected by the temperature difference between day time and night, it was recommended that reasonable working period was the duration from July to August of which average maximum temperature of Korea was approximately 30$^{\circ}C$. 6. Accelerated curing time corresponding to the normal curing time of 28-day was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mixtures for the cement of 9 percent and the curing temperature of 60was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mix- tures for the cement of 9 percent and the curing temperature of 60$^{\circ}C$ was 45 hours at the KY sample, 50 hours at the MH, 40 hours at the SS, and 34 hours at the JJ respectively. 7. Accelerated curing time was depended upon the grain size distribution of soil, it decreased with increase the percent passing of No. 200 sieve. 8. Relationship between the normal curing times and the accelerated curing times showed that there was a linear relationship between them, its slope decreased with increase of curing temperature. 9. The most reasonable soil of the soil-cement mixtures was the sandy loam which was a well graded soil. Assuming the base of road requiring 7-day strength of 21 kg/$\textrm{cm}^2$ being used, the soil-cement mixtures could be obtained with adding 6 percent of cement in such a sails S-7, S-8, S-9, S-10, S-11, S-12, S-13. 10. The regression equation between the 28-day and the 7-day strength was obtained as follow; q28=1.12q7,+6.5(r=0.96).

  • PDF

Seed Production Studies in Italian ( Lolium Multiflorum Lam. Italicum ) II. Moisture content , seed weight , shattering and germination in ripening process of Italian ryegrass (이탈리안 라이그라스의 종자생산에 관한 연구. 제2보. 사배체 품종의 종실발달에 따른 천립중 , 탈립 , 발아율 및 수분함량의 변화)

  • 류종원;강정훈;박병훈
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제5권1호
    • /
    • pp.79-83
    • /
    • 1985
  • This experiment was carried out in order to determine the optimum harvesting time of tetraploid Italian ryegrass. Moisture content, 1000-seed weight, germination and seed shattering were investigated at six harvesting times after anthesis in 1984 at Suweon. The results are summarized as follows; 1. Seed moisture content was slowly decreased until 24 days and fastly decreased from 24 days after anthesis. The daily mean moisture loss during the ripening period was about 1.5 percentage. 2. The maximum 1000-seed weight was reached at 24 days after anthesis and 1000-seed weight of Waseking was heavier than that of Giant. 3. Shattering began at 17-20 days after anthesis and thereafter rapidly increased. 4. Germination was 50% at 10 days after anthesis and maximum germination was reached at 24 days. 5. Considering germination, 1000-seed weight and shattering, the optimum harvest time was 24 to 27 days after anthesis. At this time, moisture content was 55.0 to 43.5 percent and two to five seeds per ten spikes were shed by shaking at the vertical point.

  • PDF

Studies on the Optimum Light Intensity for Growth of Punux ginseng ( I ) Effects of Light Intensity on Growth of Shoots and Roots of Ginseng Plants (인삼생육의 최적광량에 관한 연구 제1보. 광도가 인삼의 지상부생육 및 근수량에 미치는 영향)

  • 이종화;이종철
    • Journal of Ginseng Research
    • /
    • 제6권1호
    • /
    • pp.38-45
    • /
    • 1982
  • To determine the optimum light intensity for growth of ginseng plants, change of temperature, moisture content in son, occurrence alternaria blight, defoliation rate, chlorophyll contents, and growth of shoots and roots were investigated under different light intensity such as 5%, 10%, 20% and 30% light transmittance rare(L.T.R.). The results obtained were as follows. 1. Maximum temperature under the shading was increased as the increase of light intensity, whereas soil moisture content decreased 2. As the increase of light intensity, stem and Peduncle length, leaf area, and chlorophyll contents decreased significantly but length and width of the leaf was not significant, while stem diameter, special leaf weight and chlorophyll a/chl. b ratio increased 3. Stem color was shown dark purp!e as the increase of light intensity. 4. Photosynthesis during the day was highest at 9 A.M. and decreased as time passed in all plots. The means of photouynthesis during the day showed in the order of 20%, 10%, 30%, 5% L.T.R., and optimum light intensity for highest photosxthesis was 18.4% L.T.R. by theoritical equation. 5. It was showed a tendency that alternaria leaf blight of ginseng plants was increased as the increase of light intensity. 6. Defoliation rate of ginseng plants was increased as the increase of light intensity, especially all plants were defoliated by late June without shading. 7. Yield percentage of the rear line was increased as the increase of light intensity. Root weight per plant showed in the order of 20%, 10%, 30%, 5% L.T.R., and optimum light intensity for the best yield was 18.5% L.T.R. by theeritical equation.

  • PDF

Characteristics of Sweet and Super Sweet Corn Seeds Shelled at Different Seed Moisture and Threshing Method Conditions (단옥수수와 초당옥수수 탈곡 시 종자 수분함량과 탈곡방법에 따른 종자 특성)

  • Lee, Suk-Soon;Yun, Sang-Hee;Yang, Seung-Kyu;Hong, Seung-Beom
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제51권7호
    • /
    • pp.632-638
    • /
    • 2006
  • Characteristics of sweet (sugary, su) and super sweet (shrunken-2, sh2) corn seeds shelled by different threshing methods at different moisture content status were studied. Hybrid seeds of a su (Early Sunglow ${\times}$ Golden Cross Bantam 70, GCB 70) and a sh2 (Xtrasweet 82 ${\times}$Fortune) were dried to moisture content of 12, 15, 18, and 21%. Hand shelling did not give any mechanical damages to seeds, while an electrical corn thresher gave some visible mechanical damages. The emergence rate of hand shelled seeds was higher than that of machine shelled seeds by $6{\sim}14%$ for a su and by $9{\sim}18%$ for a sh2 hybrid depending on seed moisture contents in cold test. The optimum seed moisture content to reduce mechanical threshing damages and to improve seed quality was 15% for su and 12% for sh2 hybrid seeds. At the optimum seed moisture contents, germination rate at $25^{\circ}C$, emergence rate in the cold test and ${\alpha}-amylase$ activity were highest, while the percentage of damaged seeds and leakage of total sugars and electrolytes in soaking water were minimized.

Optimization of Extrusion Process Conditions to Increase the Corn Fiber Gum and Soluble Arabinoxylan Yield from Corn Fiber (옥수수 섬유질로부터 검과 수용성 아라비노자일란의 수율향상을 위한 압출성형 조건의 최적화)

  • Jeon, Sujung;Ryu, Gihyung
    • Korean Journal of Food Science and Technology
    • /
    • 제47권2호
    • /
    • pp.149-157
    • /
    • 2015
  • The effects of feed moisture content (25, 35, and 45%), screw speed (230, 250, and 270 rpm), and barrel temperature (130, 140, and $150^{\circ}C$) on the product yield and soluble arabinoxylan (SAX) content from destarched corn fiber (DCF), and its optimization were investigated. The yield and SAX content of corn fiber gum (CFG) from the extruded destarched corn fiber (EDCF) were higher than those of DCF. Statistical analyses revealed that the feed moisture content and barrel temperature had a significant effect on the CFG yield and total SAX content. The optimum extrusion pretreatment conditions were as follows: feed moisture content, 30%; screw speed, 260 rpm; barrel temperature, $133^{\circ}C$. This study showed that the response surface methodology was suitable for the optimization of the extrusion conditions used to maximize the CFG yield and total SAX content from EDCF.

Comparisons of Water Behavior and Moisture Content between Rockwools and Coir used in Soilless Culture (무토양재배용 암면과 코이어 배지의 수분 이동 및 함수율 특성 비교)

  • Shin, Jong Hwa;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • 제24권1호
    • /
    • pp.39-44
    • /
    • 2015
  • To improve crop productivity with optimal water management in soilless culture, the information of physical characteristics of the root medium including water behavior should be required. The objectives of this study were to analyze the physical characteristics including hydraulic properties of the root media commercially used and to analyze the relationships between actual moisture content and measured one by FDR sensor. The weight of the medium was measured by load cell for calculating the actual moisture content. The accuracy of the moisture content measured by FDR sensor was obtained by comparing with the actual one. The water holding capacity of the coir was lower than those of the rockwool due to the features of large and rough particles of the coir. The moisture content measured by FDR sensor showed large difference from the actual moisture contents measured by loadcell, indicating that the calibration of FDR sensor is needed before starting measurement. The optimum range of moisture content for irrigation control was narrow in the coir than the rockwool due to the lower water holding capacity and rehydration capability of the coir. The results of this study can be useful in establishing adequate irrigation strategies in the soilless culture.

Physical Properties of Rice Hull and Straw for the Handling Facilities

  • Oh, Jae H.;Kim, Myoung H.;Park, Seung J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.283-292
    • /
    • 1996
  • This study was performed to determine the physical properties of rice hull and straw which could be used for an optimum design and operation of the handling facilities for these rice crop by-products. The properties measured were kinetic friction coefficient , bulk density, and dynamic and static angle of repose. Rice hulls with moisture content of 13% and 21% were used throughout the test while rice straws of 10% and 16% moisture were chopped into 10mm length and used for the test. Friction coefficient was calculated from the horizontal traction forces measurement when a container holding the mass of rice hull and straw was pulled over mild steel. PVC, stainless steel, and galvanized steel surface by a universal testing machine. Bulk density was measured by an apparatus consisting of filling fundel and a receiving vessel. Dynamic angle of repose which is the angle at which the material will stand when piled was calculated from the photos of bulk samples after they were flowed by gravity and accumulated on a circular surface. Static angle of repose which is the angle between the horizontal and the sloping side of the material left in the container when discharging was also measured in the similar way. Results and conclusions from this study are summarized as follows . 1. Kinetic friction coefficient of both rice hull and straw were in the range of 0.26 -0.52 and increased with the moisture content. The magnitude of friction increased in the order of galvanized steel, stainless steel, PVC ,and mild steel. 2. Bulk densities of rice hull decreased while those of rice straw increased with moisture content increase . Average bulk densities of rice hull and straw were 96.8 and 74.7kg/㎥, respectively. 3. Average dynamic angle of repose for rice straw was 32.6$^{\circ}$ and those for 13% and 21% moisture rice hull were 38.9$^{\circ}$ and 44.9$^{\circ}$ , respectively. 4. Static angles of repose for both rice hull and straw showed increase with the moisture content. The values were 75.2\ulcorner and 80.2$^{\circ}$ for 13% and 21% moisture rice hull, respectively. Rice straws having 10% and 16% moisture content showed 87.3% and 89.2$^{\circ}$ static angle of repose, respectively.

  • PDF

Mechanical Characteristics of Reinforced Soil(I) -Cement Reinforced Soil- (보강 혼합토의 역학적 특성(I) -시멘트 혼합토-)

  • Song, Chang-Seob;Lim, Seong-Yoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • 제5권6호
    • /
    • pp.9-13
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with cement. And confirm the reinforcing effects with admixture such as cement. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and cement reinforced soil. In order to determine proper moisture content and mixing ratio, pilot test was carried out for soil and cement reinforced soil. And the mixing ratio of cement admixture was fixed 3%, 6%, 9% and 12% by the weight of dry soil. As the experimental results, the maximum dry unit weight(${\gamma}_{dmax}$) was increased with the mixing ratio and then shown the peak at 10% reinforced soil, but the optimum moisture content(OMC) and the volume change was decreased with the ratio increase. And the compressive strength volume change was decreased with mixing ratio increased.

Aerobic Composting of sewage sludge Mixed Rice Hulls and Sawdusts (하수오니에 왕겨 및 톱밥을 혼합한 호기성 퇴비화)

  • 정봉수;강용태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제28권3호
    • /
    • pp.99-106
    • /
    • 1986
  • This study was carried out to investigate the effects of moisture content, temperature, C/N ratio and pH of the sewage sludge mixed with hulle and sawdusts for making compost under aerobic condition and to improve the defect of the structure of experimental equipment heat lose and handling method. and obtained results were as follows 1.The temperature was reached 73$^{\circ}$ C around 50 hours fermentation in the condition of 0.8 L/min. of air and 60.4% of moisture content. and favorable moisture content of initial condition ranged from 50 to 65% 2.The temperature near bottom of the batch composter was decreased due to evaporate water vapor and lose the heat produced during aeration. and it is required to be improved. 3.The temperature in the batch composter from the center to the inside wall surface was gradually decreased. the temperatures of the points located in r=9cm and the wall surface were 4$^{\circ}$ C and 6$^{\circ}$ C respectively. and therefore it is required to be insulated. 4. The maximum C02 production was obtained as 7.3% per volume in the temperature of 63$^{\circ}$C at the moisture content of 60% 5.The temperature range of active microbes growth was found to be as 20$^{\circ}$C to 40$^{\circ}$C in the case of mesophiles and 50$^{\circ}$C to 65$^{\circ}$C in the case of thermophiles due to increase and decrease C02 production. 6.C/N ratio after decomposition was 1.3 to 2.6 smaller than that of initial one due to increase the amount of nitrogen. The more C/N ratio increased. the less the reaction velocity decresed. The optimum of it as found to be 30. 7.pH values after decomposition were slightly increased than that of initial ones. The reaction velocity was decreased at acid and alkall condition. Therefore it is neseseary to neutralize the medium to improve the reaction.

  • PDF