• Title/Summary/Keyword: Optimum Machining Condition

Search Result 74, Processing Time 0.027 seconds

Reliability Evaluation of STD-11 Cutting Surface on the Machined Condition using the Back-Propagation Neural Network (역전파 신경회로망을 이용한 가공조건에 따른 STD-11 절단면의 신뢰성 평가)

  • Kim Sun-Jin;Sung Back-Sub;Cho Gyu-Jae;Kim Ha-Sik;Ban Jae-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.7-15
    • /
    • 2004
  • The purpose of this study was to present the method to choose the optimum machining condition for the wire EDM. This was completed by examining the ever-changing quality of the material and by improving the function of the wire electric discharge machine. Precision metal mold products and the unmanned wire electric discharge machining system were used and then applied in industrial fields. This experiment uses the wire electric discharge machine with brass wire electrode of 0.25mm. To measure the precision of the machining surface, average values are obtained from 3 samples of measures of center-line average roughness by using a third dimension gauge and a stylus surface roughness gauge.

A Study on Machining Variable of centerless Grinding using for Ferrule Machining (페룰 가공용 무심연삭기의 가공변수에 관한 연구)

  • 박봉진;이은상;최헌종;이석우;조순주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.28-31
    • /
    • 2002
  • This paper compared the surface roughness with variables before development of centerless grinding using far ferrule machining. In this paper, theoretical surface roughness is obtained from variables such as mesh number, rate of concentration of grinding wheel, wheel rotation of work-piece etc., and optimum condition of machining is selected. For satisfaction the technical side and economical side, centerless grinding using fur ferrule machining should be designed more than #600, 18.8% rate of concentration of grinding wheel, 1440rpm wheel rotation outwork-piece.

  • PDF

Optimization of Process Parameters for AISI 4340 Steel in Electrical Discharge Machining (AISI 4340강의 방전가공에서 공정변수의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.17-22
    • /
    • 2019
  • The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry. This present investigation details the determination of optimum process parameter to attain the better machining performance in EDM of AISI 4340 steel with graphite as a tool electrode. The experimental combinations are planned and analyzed by Taguchi's design of experiments approach. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The influence of process variables such as discharge current, pulse on and pulse off time, voltage and spark speed were investigated to control the various desired performance measures such as surface roughness. Analysis of Variance (ANOVA) has to be performed to know the magnitude of each factor. Investigations indicate that the surface roughness is strongly depend on pulsed current.

A study for its Characteristics with Electric Variation in an Electrical Discharge Machining (방전가공에서 전기적 변화가 갖는 방전 특성에 관한 연구)

  • 신근하
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.132-136
    • /
    • 1996
  • A Study is a experiment which is figure out to aptimum discharge cutting condition of the surfaceroughness, electric discharging speed and electro wear ratio with Ton Toff and V(voltage) as an input condition according to the current(Ip) in an electric spark machine ; 1)Electrode is utilized Cu(coper) and Graphite. 2)Work piece is used the material of carbon steel. The condition of experiment is; 1)Current is varied 0.7(A) to 50(A). 2)Pulse time(Ton) is varied 3($\mu$s) to 240($\mu$s) and also Toff is varied 7($\mu$s) to 20($\mu$s). 3)The time of electric discharging to work piece in each time is 30(min) to 60(min) 4)After the upper side of work piece was measured in radius (5${\mu}{\textrm}{m}$) of syulus analyzed the surface roughness to made the table and graph of Rmax by yielding data. 5)Electro wear ratio is; \circled1Coper was measured cx-machining and post machining but the electronic baiance. \circled2The ex-machining of graphite measured by it, the post-machining was found the data from volume specific gravity and analyzed to made its table and graph on ground the data 6)In order to keep the accuracy of voltage affected to the work piece was equipped with the A.V.R(Automatic Voltage Regulator). 7)The memory scope was sticked to the electric spark machine. 8)In order to preserve the precision of current, to get rid of the noise occured by internal resistance of electric spark machine and to force injecting for the discharge fluid, it made the fixed table for a work piece to minimize the work error by means of one's failure during the electric discharging According to above results, the surface roughness by the variation of electrodw and current was analyzed to compare KS(Korea Standards) It was decided the optimum condition of electric discharge cutting through analyzing the effect of electric discharge speed and electro wear ratio.

  • PDF

Surface Grinding of Tungsten Carbide for High Quality Unign Diamond Wheel

  • Seoung-Jung Heo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.12-24
    • /
    • 1995
  • Various surface grinding experiments using resin bonded diamond abrasive wheels are carried out for tungsten carbide materials in order to minimize the damage on the ground surface and to purse the precise dimension compared to conventional grinding machine. When grinding quality is constant, theoretical grinding effect is changed according to the speed of workpiece. Accordingly, grinding forces, which are Fn, Ft, were analyzed for the machining processes of tungsten-carbide material to obtain optimum grinding conditions. Brief investigation is carried out to decrease the dressing efficiency of resinoid bonded diamond grinding wheel to grind tungsten-carbide. Truing is also carried out to provide a desired shape on a wheel or to correct a dulled profile. High quality in dimensional accuracy and surface are often required as a structural components, therefore 3-points bending test is carried out to check machining damage on the ground surface layer, which in one of sintered brittle material. From this experimental study, some useful machining data and information to determine proper machining condition for grinding of tungsten-carbide materials are obtained.

  • PDF

Optimum Machining Condition Determination for Pedicle Screw using Experimental Design Method (실험계획법에 의한 척추경 나사의 최적 절삭조건 결정)

  • Jang, Sung-Min;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.3-9
    • /
    • 2004
  • The main objectives of this paper are to determine optimum cutting conditions using experimental design method to manufacture pedicle screws. Generally, titanium alloys are known as difficult-to cut materials. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of Its low thermal conductivity and chemical reactivity. Such phenomenon cause increase of tool wear and deterioration of surface quality. Thus, in this paper, required experimental investigations are performed to evaluate the machinability of titanium materials With tungsten carbide tools Required simulation and experiments are performed, and the results are investigated.

  • PDF

Cutting Characteristics Depending on Coolant Level in Turning Process (절삭유 레벨에 따른 선삭가공 절삭특성)

  • 양승한;이영문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.80-86
    • /
    • 2004
  • With the increasing demand of environmentally clean machining in recent years, the use of coolants has been restricted extensively. In this paper, a multiple comparison method(Tukey's HSD method) is proposed to choose the optimum level of coolant necessary for an efficient and environmentally clean machining. The cutting temperature, specific cutting energy, and surface roughness in turning process are analysed by ANOVA(Analysis Of Variance) and Tukey's HSD method. From the experimental results and statistical analysis, it is found that the optimum condition of coolant level is 10 ml/min with 6% mix ratio, which is almost half of the commonly used level.

Dynamic Stability of Cutting System in Lathe Turning (선삭에서 절삭계의 동적안정성 향상에 관한 연구)

  • Chung, Joon-Ki;Lee, Hyung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.2
    • /
    • pp.33-40
    • /
    • 1984
  • Chatter is a relative vibration between workpiece and tool in machining of metals, and is an important limiting factor of production rate and surface quality, and also reduces the life of machine-tool itself and its tool. In this study, in order to suppress the machining chatter, the spring and the rubber damper are adopted to the tool post of a lathe. The results obtained in this experimental study are summarized as follows. 1. The spring and the damper employed in the tool post for the suppression of chatter increase the maximum chatter-free depth of cut and optimum values found for spring constant and compressive strain are 95kg/mm, 0.1954 respectively. 2. On the optimum condition resulting in this experimental study, the modified tool post increased 6 times in the maximum chatter-free depth of cut as compared with the conventional tool post.

  • PDF

The property of WC(Co 0.5%) Ultra precision turning for Glass Lens molding (Glass Lens 성형용 초경합금(Co 0.5%)의 초정밀 절삭특성)

  • Kim, Min-Jae;Lee, Jun-Key;Kim, Tae-Kyoung;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.41-41
    • /
    • 2010
  • In this research, to study tungsten carbide alloy(Co 0.5%) ultra precision turning possibility that is used Glass Molding Press(GMP) using conventional (Rake angle $-25^{\circ}$) single crystal diamond bite observed machining surface condition, surface roughness($R_a$), diamond bite cutting edge after tungsten carbide alloy ultra precision turning. Suggested and designed optimum chamfer bite shape to suggest ultra precision optimum bite using Finite Element Analysis(FEM). After machining tungsten carbide alloy ultra precision turning using optimum chamfer bite and comparing with conventional bite machine result and studied optimum chamfer bite design inspection and also tungsten carbide ultra precision turning possibility for high temperature compression glass lens molding.

  • PDF

A Study for its Characteristics with Electric Variation in an Electrical Discharge Machining (방전가공에서 전기적 변화가 갖는 방전 특성에 관한 연구)

  • 신근하
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.72-79
    • /
    • 1997
  • A study is a experiment which is figure out to optimum discharge cutting condition of the surface roughness, electronic discharging speed and electrode wear ration with Ton , Toff and V(voltage) as an input condition according to the current(Ip) in an electric spark machine : 1) Electrode is utilized Cu and Graphite. 2) Work piece is used the material of carbon steel. The condition of experiment is : 1) Current is varied 0.7(A) to 50(A) and the time of electric discharging to work piece in each time is 30(min) to 60(min). 2) After the upper side of work piece was measured in radius(5$\mu$m) of stylus analyzed the surface roughness to ade the table and graph of Rmax by yielding data. 3) Electro wear ratio is : \circled1Cooper was measured ex-machining and post-machining by the electronic balance. \circled2The ex-machining of graphite measured by it, the post-machining was found the data from volume $\times$specific gravity and analyzed to made its table and graph on ground the data. 4) In order to keep the accuracy of voltage affected to the work piece was equipped with the A.V. R and the memory scope was sticked to the electric spark machine. 5) In order to preserve the precision of current, to get rid of the noise occured by internal resistance of electric spark machine and to force injecting for the discharge fluid , it made the fixed table for a work piece to minimize the work error by means of one's failure during the electric discharging.

  • PDF