• Title/Summary/Keyword: Optimum Forming Process

Search Result 187, Processing Time 0.028 seconds

Recovery of Presource from Sewage Sludge by a Struvite-forming Method (Struvite 결정화를 이용한 하수슬러지내의 인 자원 회수에 관한 연구)

  • Choi, Won-Joon;Park, Kyu-Man;Yoon, Bae-Geun;Kim, Min-Chul;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.557-564
    • /
    • 2009
  • The objective of this study is to efficiently recover phosphorus contained in sewage sludge by a struvite-forming method. The performances were evaluated under various operating conditions(elution with the kind of acid, Mg-compound and temperature) in order to reach the optimum conditions of struvite-forming. As a result, as an elution solution, the elution efficiency of $H_2SO_4$ was 2.65 times higher than that of HCl. Also, the precipitation efficiency of struvite was the highest (97.4%) in case of using $MgCl_2{\cdot}6H_2O$ as Mg-compounds at $25^{\circ}C$. However, the side reaction by Fe, Al and Zn appeared in process of phosphorus recovery. To solve some problems caused by side reacton, large quantities of co-precipitation materials produced by side reaction were removed by precipitating phosphorus compounds in pH 7. Consequently, the recovery efficiency of phosphorus by a struviteforming method was 82.99%, and purity of the recovered struvite product was high.

Performance based design optimum of CBFs using bee colony algorithm

  • Mansouri, Iman;Soori, Sanaz;Amraie, Hamed;Hu, Jong Wan;Shahbazi, Shahrokh
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.613-622
    • /
    • 2018
  • The requirement to safe and economical buildings caused to the exploitation of nonlinear capacity structures and optimization of them. This requirement leads to forming seismic design method based on performance. In this study, concentrically braced frames (CBFs) have been optimized at the immediate occupancy (IO) and collapse prevention (CP) levels. Minimizing structural weight is taken as objective function subjected to performance constraints on inter-story drift ratios at various performance levels. In order to evaluate the seismic capacity of the CBFs, pushover analysis is conducted, and the process of optimization has been done by using Bee Algorithm. Results indicate that performance based design caused to have minimum structural weight and due to increase capacity of CBFs.

Development of Ceramic Composite Membranes for Gas Separation: I. Coating Characteristics of Nanoparticulate SiO2 Sols (기체분리용 세라믹 복합분리막의 개발: I. 극미세 입자 실리카 졸의 코팅 특성)

  • ;Marc A. Anderson
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.496-504
    • /
    • 1992
  • Alumina tubes suitable for the support of gas separation membranes have been prepared by the slipcasting technique. These supports have the average pore size of 0.1 ${\mu}{\textrm}{m}$ within the narrow distribution. The sol-gel dipcoating process of nanoparticulate sols is very sensitive to microstructure of the support, and the coating on the inside surface of the tube is found to be more successful than on the outside surface. Nanoparticulate silica sols (0.82 mol/ι) have been synthesized by an interfacial hydrolysis reaction between TEOS and high alkaline water. When coating an alumina tube with these sols, the minimum limits of the particle size and the aging time required for forming the coated gel layer at the given pH are provided. It is optimum to coat the support with less concentrated sols stabilized through aging for the appropriate time (more than 22 days) at the lower pH (pH 2.0) for producing a reproducible crack free thin film coating in composite membranes.

  • PDF

Slip Casting of Mn-Zn Ferrite Powders Prepared by Alcoholic Dehydration Method (알콜탈수법에 의해 제조된 Mn-Zn Ferrite 분체의 주입성형)

  • 이경직;이대희;신효순;이석기;김창현;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.394-398
    • /
    • 1997
  • Mn-Zn ferrite powders were prepared by alcoholic dehydration, using coprecipitation method. Then the effects of organic dispersant and polymeric binder concentration on stability and casting of slurry were discussed. Citric acid, the organic dispersant and polyvinylacohol(PVA), the non-ionic binder, were selected as additives of slurry. With variation of concentration of water, citric acid and polyvinylalcohol(PVA), optimum forming conditions were determined from viscosity and density. To compare with dry process, density and microstructure of sintered body formed by uniaxial die pressing were observed.

  • PDF

Deposition Properties of Dredged Materials of Kun-Jang Industrial Complex (군산지역 준설토의 퇴적특성)

  • 한영철;송정락
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.61-64
    • /
    • 1992
  • Recently, by the lack of fill material, the dredg and fill(hydraulic fill) method is commonly used in reclamation projects. Hydraulic fill method dredges the soil and send it with water through the transportation pipe to the site. The intial state of the hydraulic fill material is accordingly the mixture of water and soil skeleton which settles with time forming a new soil layer. The properties of new soil layer is governed the size of the soil skeleton, the flow velocity of mixing water, salt concentration, the distance from the discharge pipe outlet, and other dredging conditions when settling process occur. In this study, the effects of gradation of derdged soil on the deposition properties (with emphasis on the optimum spacing of the discharge pipes) was investigated by field test. It was found that the soft fine graind soil was forme at 350m from the discharge pipe outlet when the dredged material was classified as CL, while the soft fine grained soil was not formed even at the distance farther than 400m from the diacharge pipe outlet when the dredged material was classified as SM.

  • PDF

Limit Analysis of Axisymmetric Forward Extrusion (축 대칭 전방 압출의 극한 해석)

  • Kim, Byung-Min;Choi, In-Keun;Choi, Jae-Chan;Lee, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.93-104
    • /
    • 1991
  • Limit analysis is based on the duality theorem which equates the least upper bound to the greatest lower bound. In this study, limit analysis of axisymmetric forming problem with workhardening materials is formulated by minimizing the upper bound functional and finite element program is developed for forward estrusion. Limit loads, velocity and flow line fields are directly obtained under various process conditions and deformation characteristics such as strains, strain rates and grid distortion are obtained from the optimum velocity components by numerical calculation. The experimental observation was carried out for extrusion and compared with computed results. The good agreement between theoretical and experimental results is shown that the developed programming is very effective for the analysis of axisymmetric extrusion.

  • PDF

Enumeration and Activity of Methanogenic Microorganisms of th Anaerobic Digestion Process

  • Lee, Kwang-Ho
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.115-126
    • /
    • 1991
  • The anaerobic digester with sludge from sewage treatment plant was operated in the laboratory for two year to investigate the enumeration and activity of methanogenic microorganisms. In this experimental study, the effects of HRT on the degradation characteristics of organic materials and on the number of methanogenic bacteria produced were investigated. By making the media with the repeated wxperiment, the number and activity of methanogenic bacteria were measured. The increase of the removal rate of organic acid in the digester was oberved at HRT of 2 days. The total number of methane forming bacteria estimated by the MPN method showed 2.3 $\times$ $ at HRT of 3 days, 7$\times$$ of 5 days and 7.9$\times$$ $/ml of 10 days. The optimum incubation time for measuring the number of methanogenic bacteria was found as more than four weeks. The PMA revealed 161ml CH$/l day at HRT of 10 days and the PUA 290mg COD/l day. At the incubation time 4.3 days, the maximum value of CH$ *59.1%) was found. At this time, $ was found as 15.3% and $ 25.6%.

  • PDF

Process Development for Alcohol Production by Extractive Fermentation (추출 발효에 의한 알콜 제조 공정개발 -PEG/Dx 최적 이상계의 선정-)

  • 김진한;허병기목영일
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.175-180
    • /
    • 1991
  • The quantitative effects of molecular weight and concentrations of two phase-forming polymers-polyethylene glycol and crude dextran on the two phase extractive ethanol fermentation were investigated using a Box-Wilson central composite protocol. The regression model obtained was used in order to determine optimum compositions of aqueous two phase system. In the aqueous two phase extractive ethanol fermentation of Kluyueromyces fragilis CBS 1555 with Jerusalem artichoke juice, it was found from the regression model that the variables influenlcing on ethanol fermentation were PEG concentration, time, Dx concentration, and PEG molecular weight strongly in order. The interaction of PEG concentration and PEG molecular weight was also found, and the effect of PEG concentration decreased with increase in molecular weight of PEG. The ethanol concentration incresed with increase in molecular weight of PEG, and with decrease in concentration of PEG. In conolusion, maximum concentration of ethanol produced was obtained at the following compositions; PEG MW 20000, Dx concentration ranged from 4% to 5%, and PEG concentration ranged from 3% to 7%.

  • PDF

A Change of Foaming Magnitude as Thickness of Mold System (금형 시스템의 살두께에 대한 발포 배율의 변화)

  • Hwang, Yun-Dong;Cha, Seong-Un;Yun, Jae-Dong;Kim, Ji-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.186-191
    • /
    • 2000
  • We use so many plastic products in everyday. Because polymer materials have a lot of merits including low cost and easiness of forming, they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980's to save a quantity of material and increase mechanical properties. The information about the thickness of cavity plays an important role in appling microcellular foaming process to the conventional injection molding process. It is essential to make an effective foam. The goal of this research is to measure the relation between the change of cavity's thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of cavity is mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. The proposed foaming magnitude changes data of polymer in relation to mold system can be applied in more extensive injection molding process, such as optimum design of mold for microcellular foaming process.

  • PDF

Formation of Ni / Cu Electrode for Crystalline Si Solar Cell Using Light Induced Electrode Plating (광유도 전해 도금법을 이용한 결정질 실리콘 태양전지용 Ni/Cu 전극 형성)

  • Hong, Hyekwon;Park, Jeongeun;Cho, Youngho;Kim, Dongsik;Lim, Donggun;Song, Woochang
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • The screen printing method for forming the electrode by applying the existing pressure is difficult to apply to thin wafers, and since expensive Ag paste is used, it is difficult to solve the problem of cost reduction. This can solve both of the problems by forming the front electrode using a plating method applicable to a thin wafer. In this paper, the process conditions of electrode formation are optimized by using LIEP (Light-Induced Electrode Plating). Experiments were conducted by varying the Ni plating bath temperature $40{\sim}70^{\circ}C$, the applied current 5 ~ 15 mA, and the plating process time 5 ~ 20 min. As a result of the experiment, it was confirmed that the optimal condition of the structural characteristics was obtained at the plating bath temperature of $60^{\circ}C$, 15 mA, and the process time of 20 min. The Cu LIEP process conditions, experiments were conducted with Cu plating bath temperature $40{\sim}70^{\circ}C$, applied voltage 5 ~ 15 V, plating process time 2 ~ 15 min. As a result of the experiment, it was confirmed that the optimum conditions were obtained as a result of electrical and structural characteristics at the plating bath temperature of $60^{\circ}C$ and applied current of 15 V and process time of 15 min. In order to form Ni silicide, the firing process time was fixed to 2 min and the temperature was changed to $310^{\circ}C$, $330^{\circ}C$, $350^{\circ}C$, and post contact annealing was performed. As a result, the lowest contact resistance value of $2.76{\Omega}$ was obtained at the firing temperature of $310^{\circ}C$. The contact resistivity of $1.07m{\Omega}cm^2$ can be calculated from the conditionally optimized sample. With the plating method using Ni / Cu, the efficiency of the solar cell can be expected to increase due to the increase of the electric conductivity and the decrease of the resistance component in the production of the solar cell, and the application to the thin wafer can be expected.