• Title/Summary/Keyword: Optimum Expansion Pressure

Search Result 44, Processing Time 0.033 seconds

Performance Analysis of Refrigeration System Using the CFC-Alternative and Scroll Compressor (CFC-대체냉매와 스크롤압축기를 사용한 냉동시스템 성능해석)

  • Pak, H.Y.;Park, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.366-381
    • /
    • 1995
  • A performance analysis of refrigeration system using the HFC-134a and scroll compressor is performed numerically. The refrigeration system mainly consists of various standard components such as heat exchanger, compressor, and expansion device. The model for heat exchanger performance is based on a tube-by-tube method which is analyzed separately by considering the cross-flow heat transfer with the outdoor air flow and pressure drop. Compressor is used the scroll-type compressor which has many merits such as high efficiency, low noise and vibration, and small in size. Short-tube is included as an expansion device. Vapour and liquid line are also considered for the performance analysis of refrigeration system. Using the modeling of various components of refrigeration system, a performance comparison of CFC-12 and HFC-134a is performed numerically for the various outdoor air temperature and various values of short-tube diameter. As the results of this study, the refrigeration system performance decreases as the outdoor air temperature increases. And the optimum short-tube diameter based on COP is 1.37mm for this system.

  • PDF

Experimental Study on the Performance Characteristics of a CO2 Air-conditioning System for Vehicles (자동차용 CO2 에어컨 시스템의 성능 특성에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • In this study, a $CO_2$ air-conditioning system was investigated with different types of electrically driven compressors, parallel flow type gas cooler, four-pass type evaporator, internal heat exchanger integrated with accumulator, and electric expansion valve. The experimental study was conducted under various operating conditions (ie., different rotational compressor speeds, air inlet temperatures and air velocity coming into heat exchangers). The experimental results showed the cooling capacity was 3.5kW at $35^{\circ}C$ ambient temperature when the vehicle was idle (ie., the worst condition for cooling off the gas cooler). In terms of performance effect of the compressor, the e-RP model had a slightly better cooling capacity and coefficient of performance than the e-GR model under the same test conditions. An experimental equation for optimum cooling-performance control was also suggested based on the results. A high-pressure control algorithm for the super critical cycle was determined to achieve both maximum cooling performance and efficient energy consumption. The results from the experimental equation coincided with those of previous experimental studies.

Changes in Physical and Mechanical Properties of Freon-Adsorbed and Heat - Treated Leaf Tobacco (Freon Gas흡착 및 열처리에 의한 담배조직의 물리적, 역학적 특성변화연구)

  • Kim, Ki-Hwan;Yoo, Kwang-Kun;Joo, Young-Serg
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.6 no.1
    • /
    • pp.39-49
    • /
    • 1984
  • In the tobacco industry, it is important to study the change of mechanical property occurring the expansion process. The purpose of this study is to attain basic data for development of a tobacco expansion method. 1 . Freon gas was adsorbed to tobacco under various conditions of temperature, relative humidity and pressure, and then the amount of freon gas adsorbed was analyzed by GC. Freon adsorption rate of Burley 21 was more than that of By104 at the same condition and about 17 $\pm$ 1% moisture content produced better adsorption rate. 2. Freon adsorbed sample were heated to about $150^{circ}C\;to\;230^{\circ}C$ in a drying oven and recycle duct form about 2 to 30 seconds, and then the change of mechanical property were measured. Heated leaf was damaged when the tissue was pressed by the force of above $0.5x10^8dyn/cm^2$. The optimum condition of no damage of the sample was below the temperature of 15$0^{\circ}C$ and heating time of 10 seconds. It was more economically advantages to treated sample in a recycle duct than to be in a drying oven. By this process, the specific volume of the heated sample was increased from 80 to 110 percent in comparison to that of untreated sample.

  • PDF

Investigation concerning Design Method of the Diffuser Expansion Ratio Commanding a Starting of the Second Throat Exhaust Diffuser for High Altitude Simulation (고도모사용 2차목 디퓨져 시동을 위한 디퓨져 팽창비 설계기법에 관한 연구)

  • Park, Sung-Hyun;Park, Byung-Hoon;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.299-304
    • /
    • 2008
  • Starting characteristics of the axi-symmetric second throat exhaust diffuser (STED) with zero-secondary flows are numerically investigated. Renolds-Average Navier-Stokes equations with a standard ${\kappa}-{\varepsilon}$ turbulence model incorporated with enhanced wall treatment are solved to simulate the diffusing evolutions of the nozzle plume. Minimum (optimum) starting pressure difference of 20$\sim$25% between 1-D theory and the measured data validated from previous results[5] is also applied to predict the range of an effective diffuser expansion ratio (Ad/At) in this system.

  • PDF

Manufacture of Thin Polymer Matrix for PAFC (인산형 연료전지용 고분자 박막 매트릭스 제조)

  • 심재철;은영찬;신동열;이주성
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.229-237
    • /
    • 1996
  • Porous matrices for PAFC were prepared with chemically synthesized polyaniline powders. Phosphoric acid doped polyaniline showed decreasing electric conductivities as the temperature increased. Above $100^{\circ}C$, it showed negligible conductivities. It was stable in phosphoric acid up to $250^{\circ}C$. SiC powders or SiC whiskers were added to polyaniline to decrease the thermal expansion of polyaniline. 10% of polytetrafluoroethylene(PTFE) was also added as a binder. The bubble pressures and wettabilities of matrices were investigated and compared with the porosities measured by porosimeter. Based on these data, the optimum manufacturing condition was determined. The bubble pressure of the matrix made by adding 25w/o SiC whiskers was 345mmHg, the wettability was 235w/o, and the porosity was 83%. In the unit cell operation, the performances of polyaniline matrices were as good as those of SiC matrices. This result suggested that polyaniline can be a possible candidate for the matrix material of PAFC.

  • PDF

Studies on the Performance Characteristics of an Electronically Controlled $CO_2$ Air Conditioning System for Fuel Cell Electric Vehicles (연료전지 자동차용 전자 제어식 $CO_2$ 냉방 시스템의 성능 특성에 관한 연구)

  • Kim, Sung-Chul;Lee, Dong-Hyuk;Lee, Ho-Seong;Won, Jong-Phil;Lee, Dae-Woong;Lee, Won-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.150-157
    • /
    • 2008
  • The main objective of this paper is to investigate the performance characteristics of a $CO_2$ air conditioning system for fuel cell electric vehicles (FCEV). The present air conditioning system for FCEV uses the electrically driven compressor and electrically controlled expansion valve for $CO_2$ as a working fluid. The experimental work has been done with various operating conditions, which are quite matching the actual vehicle's driving conditions such as different compressor speed and high pressure to identify the characteristics of the system. Experimental results show that the cooling capacity and coefficient of performance (COP) were up to 6.3kW and 2.5, respectively. This paper also deals with the development of optimum high pressure control algorithm for the transcritical $CO_2$ cycle to achieve the maximum COP.

Experimental Study on the Slanted Portals for Reducing the Micro-pressure Waves in High-speed Train-tunnel System(I) (고속철도 터널에서 경사갱구 입구의 미기압파 저감성능에 관한 연구(I))

  • Kim, Dong-Hyeon;Shin, Min-Ho;Han, Myeong Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The compression wave produced when a high-speed train enters a tunnel propagates along the tunnel ahead of the train. The micro pressure wave related to the compression wave is a special physics phenomena created by high-speed train-tunnel interfaces. A among methods for the purpose of reducing the micro pressure wave is to delay the gradient of the compression wave by using aerodynamic structures. The objective of this paper is to determine the optimum slanted portal using the moving model rig. According to the results, the maximum value of micro pressure wave is reduced by 19.2% for the $45^{\circ}$ slanted portal installed at the entrance of the tunnel and reduced by 41.9% for the $45^{\circ}$ slanted portals at the entrance and exit of the tunnel. Also it is reduced by 34.6% for the $30^{\circ}$ slanted portals installed at the entrance and exit of the tunnel.

  • PDF

Shape Optimum Design of Ship's Bellows Using Statistical Method (통계적 방법을 이용한 선박용 벨로우즈의 형상 최적 설계)

  • Kim, Hyun-Su;Kim, Hyo-Gyeum;Lee, Jae-Sub;Kim, Hyoung-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.55-60
    • /
    • 2007
  • Bellows are mechanical components which prevent the damage of system by absorption of the vibration and the displacement of axle and radial direction. Thermal piping system is expanded by the fluid of the high temperature from the heat engine inside. At this time, bellows prevent the damage of the piping due to the thermal expansion. Recently, design of bellows is required to fit some other operational environments which are not suggested in the E.J.M.A code book. And it is difficult to produce and to maintain bellows of high temperature and high pressure bemuse of its complicated shape and this causes the manufacturing cost to rise. The objective of this study is to determine optimum shape of bellows which can endure in the high temperature and high pressure. The maximum stress has an effect on the fatigue life of bellows, therefore it needs to be minimized. This study attempts to find a shape which minimizes the stress occurring in the bellows by the design of experiment. The model used in this study is not presented in the E.J.M.A code book, therefore, from the result of design of experiment we find the factors which give effects on the characteristic value and we presents the recession model using the RSM, which can predict the characteristic values depending on the change of factor values.

An experimental study on the cooling performance and the phase shift between piston and displacer in the Stirling cryocooler

  • Park, S. J.;Y. J. Hong;Kim, H. B.;D. Y. Koh;B. K. Yu;Lee, K. B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.111-117
    • /
    • 2003
  • In the design of the split type free displacer Stilting cryocooler the motion of the displacer is very important to decide the cooling capacity, which depends upon the working gas pressure, the swept volume in the compression space and the expansion space, operating frequency, the phase shift between piston and displacer, etc. In this study, Stirling cryocooler actuated by the electric farce of the dual linear motor is designed and manufactured. Cool down characteristics of the cold end with laser displacement sensor in the expander of the Stilting cryocooler is evaluated. The charging pressure was 15kg$_{f}$/$\textrm{cm}^2$ and operating frequency was 50Hz. Input power and the lowest temperature were about 32W and 67K, respectively. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of thedisplacer is measured by laser optic method, and phase shift between piston and displacer is discussed. As the peak-to-peak pressure of the compressor was increased, peak-to-peak displacement of the displacer was increased. The peak-to-peak displacement of the displacer increases in the range of 0 - 64.5Hz(resonant frequency of the displacer), but decreases steeply when the operating frequency is bigger than the resonant frequency. Finally when the phase shift between displacements of the Piston and displacer is 45。, operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance.e.

A Study on Hybrid Grout Material for Reservoir Embankment reinforcement (저수지 제방 보수보강을 위한 하이브리드형 그라우트재 연구)

  • Park, Sung-Yong;Shim, Houng-Gen;Kang, Hee-Jin;Lim, One-Bin;Sami, Ghazali-Flimban;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.21-30
    • /
    • 2017
  • Cement grouting method is generally applied for the purpose of reinforcement of deteriorated reservior. Problems have been raised due to the limit of the injection material. In order to solve these problems, various grout materials have been developed. However, there are many cases in which the grounds are disturbed in actual field. In this study, the physical properties of hybrid grout with high fineness and high viscosity characteristics were analyzed to enable penetration into the ground. Optimum inflation agent was selected and mixed with the grout. The pressure and compaction effect on expansion was examined and its effectiveness was verified. From the result of confirming expansion ratio, uniaxial compressive strength, expansion pressure and compaction effect, the HI-E (2%) sample was analyzed to be excellent in improvement effect by the inflation agent. Hence, hybrid grout can be effectively applied for the impermeable and reinforcement method of deterioration reservoir and tide embankment.