• Title/Summary/Keyword: Optimum Blank Design

Search Result 45, Processing Time 0.024 seconds

Experimental Study on the Deep Drawing Process for L-shape Cross Section (L형 단면의 ?드로잉 가공에 대한 실험적 연구)

  • 김상진;양대호;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.281-287
    • /
    • 1996
  • Two kinds of blank shapes optimum and square are adopted to investigate formability. Optimum blank shape is determined to construct an L-shape cup with uniform height and without flange part. For this purpose rigid-plastic FEM analysis is applied with backward tracing technique. Maximum cup depth and strain distribution are measured experimentally for the products of the two kinds of blank shapes which are optimum and square. it is confirmed that deeper cup without severe thickness reduction can be obtained from the optimum shape.

  • PDF

Blank Design for the General Shaped Deep Drawing Products by F.E.M (유한요소법을 이용한 임의의 단면 딥드로잉 제품의 소재형상설계)

  • Kim, Sang-Do;Park, Min-Ho;Seo, Dae-Gyo
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.302-321
    • /
    • 1995
  • A method of determining an optimum blank shape for the non-circular deep drawing process is investigated. The rigid-plastic finite element method is introduced and the computer program code is developed. The ideal shape of a drawn cup with uniform wall height is assumed and metal flow is traced back-ward step by step to predict an initial blank shape of the ideal cup. For examples of the non-circular deep drawing products, three cases of drawn cup with quadrilateral punch shape are considered and optimum blank shapes for each case are proposed and compared with experimental results.

  • PDF

A CAE Approach for Net-Shape Automobile Stamping Components of Aluminum Alloy (자동차용 알루미늄 합금 정형의 스탬핑 부품 성형을 위한 CAE기법개발)

  • 최한호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.45-48
    • /
    • 1999
  • A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracking simulation has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup produce without machining after forming. Another general application appears in the blank design of a cup stamping with protruding flanges one of typical automobile components. The blank configurations derived by backward tracing simulation have been confirmed by a series of loading simulations. The approach for decision of an initial blank configuration presented in this study will be a milestone in fields of sheet forming process design.

  • PDF

Experimental Study on the Multi-stage Deep Drawing Process (다단계 ?드로잉 가공에 대한 실험적 연구)

  • 박민호;김상진;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.288-296
    • /
    • 1996
  • A method of determining an optimum blank shape for non-circular deep drawing process is extended to the multi-stage deep drawing process. As an example concentric two-stage square deep drawing process is considered and the ideal blank shape with uniform cup height and without flange part after the process is constructed by the backward tracing of rigid plastic FEM. The conventional square blank shapes are also adopted for the comparison of two cases. As a result it is confirmed that the drawn products with better thickness strain distribution and deeper cup depth could be obtained by the suggested ideal blank shapes.

  • PDF

Formability of deep drawing process for reentrant cross section (오목형 단면 딥드로잉에서의 성형성)

  • 박민호;김상진;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.138-144
    • /
    • 1996
  • The differences of formability with maximum cup depth of drawn product and thickness strain distribution are compared for two kinds of blank shapes which are suggested optimum shape and conventional square shape. The suggested blank is determined by backward tracing technique of rigid-plastic FEM. The deeper cup without wrinkle and flange part could be obtained from the suggested blank shape however the cross sevtion sup from the square blank could not be kept smooth thickness strain distribution and defended those phenomena..

  • PDF

Blank Design for Optimized Thickness Distribution for Axi-symmetric Superplastic Blow Forming (축대칭 초소성 블로성형의 두께분포 최적화를 위한 블랭크 설계)

  • 이정민;홍성석;김용환
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.92-100
    • /
    • 1999
  • A procedure is proposed for determining the initial thickness distribution in oder to produce a specified final thickness distribution for the axisymmetrical superplastic blow forming processes. Weighted parameter is introduced to improve the simple ad $d_traction method and the initial blank thickness distribution is obtained by optimizing the weighted parameter. This method is applied to superplastic free bulging process with the uniform thickness distribution of final shape to confirm its validity. The optimum initial blank thickness distributions is obtained from arbitrary axisymmetrical superplastic blow forming processes such as dome, cone and cylindrical cup forming with die contact. It is concluded that the ad $d_traction method with weighted parameter is an effective method for an optimum blank thickness distribution design.esign.

  • PDF

Development of Bending Process for Crank Throw of Large Marine Engine Using Unbending Concept (언벤딩 개념을 이용한 선박용 대형 크랭크 쓰로우 굽힘단조 공법 개발)

  • Lee, S.M.;Lee, W.J.;Kim, I.H.;Park, Y.G.;Park, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.46-49
    • /
    • 2007
  • The purpose of this study is to develop the optimum shape of blank for the crank throw of large marine engine in order to reduce manufacturing cost and forging defects. The effects of the curvature radius and the height of wing part of blank selected as design variables on the defects and machining margin of final products after forging process were investigated using FEA. Based on the results, the optimum shape for the blank of the crank throw was proposed and verified by experiment.

  • PDF

A Study on the Optimum Pre-form Design for Multistage Deep Drawing of Oval Shells (타원형 다단계 디프드로잉 용기의 최적 예비형성 설계에 관한 연구)

  • 김두환
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.356-363
    • /
    • 1999
  • This paper discusses some techniques for the determination of optimum blank size and pre-form design for multi-stepped deep drawing of oval shell. The deep drawing process of oval shape has been regarded as more difficult than that of cylindrical shell because of its complicated behavior of plastic deformation. But there is insufficient information in this area to carry out successful deep drawing work of irregular products such as oval, rectangular, and square shapes. In order to find the optimum conditions, the drawing apparatus for two kinds of pre-form design are built, a series of drawing experiments performed, and thickness stain distributions measured. From the results of thess suggested experiments, various optimum process variables are observed and discussed.

  • PDF

Three Dimensional Multi-step Inverse Analysis for Optimum Blank Design in Sheet Metal Forming (박판금속성형의 최적 블랭크 설계를 위한 삼차원 다단계 역해석)

  • Lee, Choong-Ho;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.179-182
    • /
    • 1997
  • One-step inverse methods based on deformation theory causes some amount of error. The amount of error is generally increased as the deformation path is more complex. As a remedy, a new three dimensional multi-step inverse method is introduced for optimum design of blank shapes and strain distributions from desired final shapes. The approach extends a one-step inverse method to a multi-step inverse method in order to reduce the amount of error. The algorithm developed is applied to square cup drawing to confirm its validity by demonstrating reasonably accurate numerical results.

  • PDF

A Study on Improving Formability of Stamping Processes with Segmented Blank Holders using Artificial Neural Network and Genetic Algorithm (인공신경망과 유전 알고리즘을 이용한 분할 블랭크 홀더 스탬핑 공정의 성형성 향상에 관한 연구)

  • G. P. Kim;S. D., Goo;M. S. Kim;G. M. Han;S. W. Jun;J. S. Lee;J. H. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.276-286
    • /
    • 2023
  • The field of sheet metal forming using press technology has become essential in modern mass production systems. Draw bead is often used to enhance formability. However, optimal draw bead design often requires excessive time and cost due to iterative experimentation and sometimes results in some defects. Given these challenges, there is a need to enhance formability by introducing segmented blank holders without draw beads. In this paper, the feasibility of a localized holding strategy using segmented blank holders is evaluated without the use of draw beads. The possibility for improving the formability was evaluated by utilizing a combination of the forming limit diagram and the wrinkle pattern-based defect indicators. Artificial neural networks were used for predicting defect indicators corresponding to arbitrary input holding forces and the NSGA-II optimization algorithm is used to find optimum blank holder forces yielding better defect indicators than the original process with drawbeads. Using optimum holding forces obtained from the proposed procedure, the stamping process with the segmented blank holders can yield better formability than the conventional process with drawbeads.