• Title/Summary/Keyword: Optimum Algorithm

Search Result 1,618, Processing Time 0.03 seconds

Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms (유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계)

  • Yuh, Baeg-Youh;Park, Choon-Wook;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Size, Shape and Topology Optimum Design of Trusses Using Shape & Topology Genetic Algorithms (Shape & Topology GAs에 의한 트러스의 단면, 형상 및 위상최적설계)

  • Park, Choon-Wook;Yuh, Baeg-Youh;Kim, Su-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.43-52
    • /
    • 2004
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algerian was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Optimum Design of journal Bearing by the Enhanced Artificial Life Optimization Algorithm (인공생명 알고리듬을 이용한 저널 베어링의 최적설계)

  • 송진대;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • This paper presents an optimum design of journal bearings using a hybrid method to find the solutions of optimization problem. The present hybrid algorithm, namely Enhanced Artificial Life Algorithm(EALA), is a synthesis of an artificial life algorithm(ALA) and the random tabu search(R-tabu) method. EALA is applied to the optimum design of journal bearings supporting simple rotor. The applicability of EALA to optimum design of rotor-bearing system is exemplified through this study.

  • PDF

Optimum Design of Frame Structures Using Generalized Transfer Stiffness Coefficient Method and Genetic Algorithm (일반화 전달강성계수법과 유전알고리즘을 이용한 골조구조물의 최적설계)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.202-208
    • /
    • 2005
  • The genetic algorithm (GA) which is one of the popular optimum algorithm has been used to solve a variety of optimum problems. Because it need not require the gradient of objective function and is easier to find global solution than gradient-based optimum algorithm using the gradient of objective function. However optimum method using the GA and the finite element method (FEM) takes many computational time to solve the optimum structural design problem which has a great number of design variables, constraints, and system with many degrees of freedom. In order to overcome the drawback of the optimum structural design using the GA and the FEM, the author developed a computer program which can optimize frame structures by using the GA and the generalized transfer stiffness coefficient method. In order to confirm the effectiveness of the developed program, it is applied to optimum design of plane frame structures. The computational results by the developed program were compared with those of iterative design.

  • PDF

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

Development of an Enhanced Artificial Life Optimization Algorithm and Optimum Design of Short Journal Bearings (향상된 인공생명 최적화 알고리듬의 개발과 소폭 저널 베어링의 최적설계)

  • Yang, Bo-Suk;Song, Jin-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.478-487
    • /
    • 2002
  • This paper presents a hybrid method to compute the solutions of an optimization Problem. The present hybrid algorithm is the synthesis of an artificial life algorithm and the random tabu search method. The artificial life algorithm has the most important feature called emergence. The emergence is the result of dynamic interaction among the individuals consisting of the system and is not found in an individual. The conventional artificial life algorithm for optimization is a stochastic searching algorithm using the feature of artificial life. Emergent colonies appear at the optimum locations in an artificial ecology. And the locations are the optimum solutions. We combined the feature of random-tabu search method with the conventional algorithm. The feature of random-tabu search method is to divide any given region into sub-regions. The enhanced artificial life algorithm (EALA) not only converge faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all global optimum solutions. The enhanced artificial life algorithm is applied to the optimum design of high-speed, short journal bearings and its usefulness is verified through an optimization problem.

Water Flowing and Shaking Optimization

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.173-180
    • /
    • 2012
  • This paper proposes a novel optimization algorithm inspired by water flowing and shaking behaviors in a vessel. Water drops in our algorithm flow to the gradient descent direction and are sometimes shaken for getting out of local optimum areas when most water drops fall in local optimum areas. These flowing and shaking operations allow our algorithm to quickly approach to the global optimum without staying in local optimum areas. We experimented our algorithm with four function optimization problems and compared its results with those of particle swarm optimization. Experimental results showed that our algorithm is superior to the particle swarm optimization algorithm in terms of the speed and success ratio of finding the global optimum.

Optimum Design of Piled Raft Foundations using Genetic Algorithm (유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계)

  • 김홍택;강인규;황정순;전응진;고용일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.415-422
    • /
    • 1999
  • This paper describes a new optimum design approach for piled raft foundations using the genetic algorithm. The objective function considered is the cost-based total weight of raft and piles. The genetic algorithm is a search or optimization technique based on nature selection. Successive generation evolves more fit individuals on the basis of the Darwinism survival of the fittest. In formulating the genetic algorithm-based optimum design procedure, the analysis of piled raft foundations is peformed based on the 'hybrid'approach developed by Clancy(1993), and also the simple genetic algorithm proposed by the Goldberg(1989) is used. To evaluate a validity of the optimum design procedure proposed based on the genetic algorithm, comparisons regarding optimal pile placement for minimizing differential settlements by Kim et at.(1999) are made. In addition using proposed design procedure, design examples are presented.

  • PDF

A hybrid tabu-simulated annealing heuristic algorithm for optimum design of steel frames

  • Degertekin, S.O.;Hayalioglu, M.S.;Ulker, M.
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.475-490
    • /
    • 2008
  • A hybrid tabu-simulated annealing algorithm is proposed for the optimum design of steel frames. The special character of the hybrid algorithm is that it exploits both tabu search and simulated annealing algorithms simultaneously to obtain near optimum. The objective of optimum design problem is to minimize the weight of steel frames under the actual design constraints of AISC-LRFD specification. The performance and reliability of the hybrid algorithm were compared with other algorithms such as tabu search, simulated annealing and genetic algorithm using benchmark examples. The comparisons showed that the hybrid algorithm results in lighter structures for the presented examples.