• 제목/요약/키워드: Optimized coefficients

검색결과 275건 처리시간 0.023초

드럼세탁기 현가시스템의 최적설계 (Optimum Suspension System Design for a Drum-typed Washing Machine)

  • 차상태;백운경
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.20-28
    • /
    • 2014
  • Most washing machines are now produced as a drum-type, where a washing drum mounted on a suspension system with springs and dampers, to minimize the transmittance of the vibration from the drum to the cabinet. The purpose of this paper is to develop optimized suspension system of the drum washing machine which minimizes transmission of disturbing vibration and force. In this paper, a method for optimizing suspension system of the drum washing machine is presented using ADAMS. The design variables to optimize are extracted using Sequential Quadratic Programming(SQP) in ADAMS. To evaluate optimized spring constants and damping coefficients of the drum washing machine, simulation was done to compare the vibration attenuation performances before and after the optimization. The results of simulation show that the optimized suspension system has better performance than before the optimization.

로터 블레이드 OA 익형의 공력 최적 설계 (AERODYNAMIC DESIGN OPTIMIZATION OF ROTOR BLADE OA AIRFOILS)

  • 사정환;박수형;김창주;윤철용;김승호;김상호;유영훈
    • 한국전산유체공학회지
    • /
    • 제14권2호
    • /
    • pp.25-31
    • /
    • 2009
  • Numerical optimization of rotor blade airfoils is performed with a response surface method for helicopter rotor. For the baseline airfoils, OA 312, OA 309, and OA 407 airfoils are selected and optimized to improve aerodynamic performance. Aerodynamic coefficients required for the response surface method are obtained by using Navier-Stokes solver with k-$\omega$ Shear Stress Transport turbulence model. An optimized airfoil has increased drag divergence Mach number. The present design optimization method can generate an optimized airfoil with multiple design constraints, whenever it is designed from different baseline airfoils at the same design condition.

가스포일 저널베어링 및 스러스트베어링의 성능해석 (Performance Analysis of Gas Foil Journal & Thrust Bearings)

  • 김영철;한정완;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.267-272
    • /
    • 2003
  • This paper presents a performance analysis model of corrugated bump foil bearings. The analyses for not only 1st generation bump foil journal bearings but also bump foil thrust bearings are performed. Static performances such as load capacity, attitude angle, pressure distribution, foil deflection, and film thickness are accurately estimated by using soft elasto-hydrodynamic analysis technique and finite difference numerical method. Also dynamic performances such as stiffness coefficients and damping coefficients are estimated by perturbation method. The analysis technique may be appliable to rotordynamic analysis, stability analysis, and optimized bearing design.

  • PDF

Extraction of Optimal Operation Condition of QAM Envelope Tracking System using Combined Cost Function of Bandwidth and Efficiency

  • Kim, Changwook;Park, Youngcheol
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1019-1024
    • /
    • 2018
  • In this paper, we suggest a combined cost function to find out the optimal operation of an envelope tracking system, and evaluated its performance with Quadrature Amplitude Modulation (QAM) waveform, with which envelope tracking coefficients for the peak drain efficiency and the bandwidth of power amplifiers are determined. Based on the classical envelope tracking theory, the operation of the supply modulator, which is a key part of the envelope tracking process, is modeled and analyzed mathematically. Then characteristics of the modulator by setting envelope shaping function as a cubic polynomial and sweeping the coefficients of this function was analyzed. By sweeping the coefficients, efficiency and bandwidth at each condition with 64-QAM signal was used to obtain optimal point of the supply modulator. Compared to the conventional shaping functions, the optimized function showed the bandwidth reduction by 12.7 percent point while the efficiency was maintained.

하수처리장 방류수에 용존된 무기화학종의 연속계측자료를 이용한 하천유량, 유속 및 방류량 추적

  • 김강주;한찬
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.3-6
    • /
    • 2001
  • Various Parameters such as stream velocities, discharges, and dispersion coefficients of dissolved solutes were estimated by fitting 1-D nonreactive solute transport model to the time-series chemistry data. This study was done for the reaches of Mankyung River lower than the Jeonju Wastewater Treatment Plant (Jeonju WTP). Korea. Concentrations of inorganic chemicals in the stream waters are strongly influenced by mixing with the chemically distinct effluent from Jeonju WTP. Sulfate, EC. and the total major cation were proved to be nearly conservative in the study area front their relationships with chloride, the conservative chemical species. The solute transport model was constrained to the time-series concentrations for these 4 conservative species. The variations of concentration and discharge of Jeonju WTP were used as input parameters, and the stream velocities, dispersion coefficients, and concentrations and discharges of some inflows were optimized. The differences between the observed arid simulated values for alkalinities and nitrates are inversely correlated and show diurnal fluctuations, indicating the photosynthesis. The parameters obtained front this mode] range from 550 to 774 kcmd (stream discharge at the outlet of the study area), from 0.06 to 0.10 m/sec (flow velocity), and from 0.7 to 6.4 m$^2$/sec (dispersion coefficient). The history of Jeonju WTP discharge was well predicted when optimized, indicating the validity of the model results.

  • PDF

고 받음각 2차원 NACA0012 에어포일 주위의 비정상 공기역학적 특성 (Unsteady Aerodynamic characteristics at High Angle of Attack around Two Dimensional NACA0012 Airfoil)

  • 유재경;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.414-419
    • /
    • 2011
  • Missile am fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 60 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure distribution, etc. are analyzed according to the angle of attack. The results at a low angle of attack are compared with other results before a stall condition. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution on the airfoil surface, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

고받음각 2차원 에어포일 주위의 비정상 유동의 진동 특성에 관한 연구 (ANALYSIS OF UNSTEADY OSCILLATING FLOW AROUND TWO DIMENSIONAL AIRFOIL AT HIGH ANGLE OF ATTACK)

  • 유재경;김재수
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Missile and fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 50 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure, entropy distribution, etc. are analyzed according to the angle of attack. The results of average lift coefficients are compared with other results according to the angle of attack. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. The primary and secondary oscillating frequencies are analyzed by the effects of these unsteady aerodynamic characteristics.

웨이브렛 변환을 이용한 비트율-왜곡 최적화 제로트리 영상 부호화 (Rate-Distortion Optimized Zerotree Image Coding using Wavelet Transform)

  • 이병기;호요성
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.101-109
    • /
    • 2004
  • 본 논문에서는 비트율-왜곡 (R-D) 이론을 사용하는 웨이브렛 기반 정지영상 부호화 방식을 위한 효율적인 알고리즘을 제안한다. 트리 구조에 기반한 기존의 부호화 방식은 비트율-왜곡 이론을 고려하지 않았기 때문에 감소된 부호화 성능을 지닌다. 본 논문에서는 계층적 트리 분할 (SPIHBT) 알고리즘에 비트율-왜곡 최적화 임베딩 (RDE) 연산을 적용한다. 제안된 알고리즘은 SPIHT의 리스트에 웨이브렛 계수의 부호화 순서를 위한 기준으로 비트율-왜곡 경사를 사용한다. 이를 위한 변형된 트리분할과 비트율-왜곡 최적화 리스트 스캔 방식을 설명한다. 제안된 방식은 기존의 SPIHT 및 RDE 알고리즘에 비해 향상된 비트율-화질 성능을 보인다.

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

머신러닝 기법을 활용한 유황별 LOADEST 모형의 적정 회귀식 선정 연구: 낙동강 수계를 중심으로 (Study of Selection of Regression Equation for Flow-conditions using Machine-learning Method: Focusing on Nakdonggang Waterbody)

  • 김종건;박윤식;이서로;신용철;임경재;김기성
    • 한국농공학회논문집
    • /
    • 제59권4호
    • /
    • pp.97-107
    • /
    • 2017
  • This study is to determine the coefficients of regression equations and to select the optimal regression equation in the LOADEST model after classifying the whole study period into 5 flow conditions for 16 watersheds located in the Nakdonggang waterbody. The optimized coefficients of regression equations were derived using the gradient descent method as a learning method in Tensorflow which is the engine of machine-learning method. In South Korea, the variability of streamflow is relatively high, and rainfall is concentrated in summer that can significantly affect the characteristic analysis of pollutant loads. Thus, unlike the previous application of the LOADEST model (adjusting whole study period), the study period was classified into 5 flow conditions to estimate the optimized coefficients and regression equations in the LOADEST model. As shown in the results, the equation #9 which has 7 coefficients related to flow and seasonal characteristics was selected for each flow condition in the study watersheds. When compared the simulated load (SS) to observed load, the simulation showed a similar pattern to the observation for the high flow condition due to the flow parameters related to precipitation directly. On the other hand, although the simulated load showed a similar pattern to observation in several watersheds, most of study watersheds showed large differences for the low flow conditions. This is because the pollutant load during low flow conditions might be significantly affected by baseflow or point-source pollutant load. Thus, based on the results of this study, it can be found that to estimate the continuous pollutant load properly the regression equations need to be determined with proper coefficients based on various flow conditions in watersheds. Furthermore, the machine-learning method can be useful to estimate the coefficients of regression equations in the LOADEST model.