• Title/Summary/Keyword: Optimized calculation

Search Result 322, Processing Time 0.023 seconds

Vibration characteristics of diesel generator set with resilient mount and prevention of vibration on the design stage (탄성 마운트 장착 디젤 발전기 세트의 진동 특성과 예방에 대한 연구)

  • Lee, Kun-Hee;Bae, Jong-Gug;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.921-924
    • /
    • 2005
  • Diesel generator sets with resilient mounts often experience resonances by major excitations which come from diesel engine and their foundation with rigid body modes. Because their natural frequency is determined by moment of inertia and stiffness of resilient mount vibration problems are resolved by changing location and stiffness of resilient mounts. But the calculated natural frequencies are inaccurate due to uncertainty of the inertia and mount stiffness. So this result can be useless on the design stage. In this paper, the stiffness of mount is evaluated on result from mount stiffness test in laboratory and generator set vibration test and a simple calculation method for moment of inertia is proposed. Based on these data, the procedure to select optimized mount stiffness and location on the design stage is set up.

  • PDF

Monitoring Kinetics Using Near Infrared Spectra and Two-dimensional Correlation Spectroscopy

  • Berry, R. James;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1282-1282
    • /
    • 2001
  • Near Infrared (NIR) spectra has long been used in industry to monitor rates of reactions via calculation of analyte concentrations. However, the kinetic information is inherent in the data through spectral ratios. Two-dimensional correlation spectroscopy (2D-COS) is a spectral method that is based on changes (e.g. concentration) in time and is therefore uniquely suited for reaction monitoring. This method is especially useful in the understanding of how the reaction(s) proceeds. We will show the application of 2D-COS to synthetic kinetic data from different reaction orders to illustrate the method. We will then show application to real reactions of various orders. Finally, we will illustrate how 2D-COS will be of specific interest to developing optimized industrial reactions.

  • PDF

Measurement of the Velocity field of Rotor-Stator in a Centrifugal Turbine Pump by Using PIV (PIV를 이용한 터빈펌프의 동${\cdot}$정익 속도장 계측)

  • Im, Yu-Cheong;Seo, Min-Sik;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.11-18
    • /
    • 1998
  • The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to rotor-stator region within centrifugal turbine pump. Six different kinds of rpm(120, 500, 1000, 1500, 2000 and 2500) are selected as experimental condition. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. Fine optical setup deeply concerned with PIV performance is arranged for accurate PIV measurement of high-speed complex flow. The instantaneous and time-mean velocity distribution and velocity profile are represented quantitatively at the rotor and stator region.

  • PDF

Design of Rotary Magnetic Position Sensor with Sinusoidally Magnetized Permanent Magnet (정현적으로 착자된 영구자석을 갖는 마그네틱 위치센서 설계)

  • Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.506-513
    • /
    • 2007
  • This paper proposes a rotary magnetic position sensor which has a sinusoidally magnetized permanent magnet with a small number of poles. To make the sinusoidal magnetic flux density distribution from the permanent magnet, a magnetizing future is optimized by the DOE(Design of Experiments) method. The magnetization process is analyzed using the Preisach model and 2 dimensional finite element method. The magnetic flux density distribution from the magnetized permanent magnet is very similar to ideal sine wave. The simulation result of the magnetic flux density distribution is compared with the experimental one. Also the availability of the proposed rotary type magnetic position sensor is confirmed by position calculation technique.

MPTC of Induction Motor Driven with Low Switching Frequency (낮은 스위칭 주파수로 구동되는 유도전동기의 모델예측토크제어)

  • Choi, Yuhyon;Han, Jungho;Song, Joongho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.61-68
    • /
    • 2015
  • When medium and large induction motors are driven by 2-level inverters with low switching frequency, induction motors provoke deteriorated performances resulted from large torque ripples, flux ripples, and large current distortion. Model predictive torque control(MPTC) for a fast torque control of induction motors is also suffered from large torque ripples when the induction motors are fed by 2-level inverters that are based on 6 active voltage vectors with low switching frequency restricted. To solve this problem, this paper proposes a new MPTC method based on both a 12 active voltage vector and an optimized duty ratio calculation. The proposed control strategy illustrates its effectiveness under the various operating conditions through simulation works.

Robust Optimization of the Automobile Rearview Mirror for Vibration Reduction (승용차용 후사경의 진동 저감을 위한 강건최적설계)

  • 황광현;이광원;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.198-206
    • /
    • 1999
  • An automobile outside rear view mirror system has been analyzed and designed to reduce vibration with a finite element model. model analysis is conducted for the calculation of natural frequencies. harmonic analysis is utilized to estimate the displacements of the glass surface under dynamic loads. The model is verified with the vibration experiment of the parts and the assembled body. The structure of the mirror system is optimized for the robustness defined by the Taguchi concept. At first, many potential design variables are defined. Final design variables are selected based on the amount of contribution on the objective function. That is, sensitive variables are chose. The SN ratio in the Taguchi method is replaced by an objective function with the mean and the standard deviation of the quality characteristic. The defined objective function is appropriate in the structural design in that the vibration displacements are minimized while the robustness is improved.

  • PDF

Design of the vacuum pumping system for the KSTAR NBI device (KSTAR 중성빔 입사(NBI) 장치 배기계통 설계)

  • 오병훈;인상렬;조용섭;김계령;최병호
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.548-555
    • /
    • 1999
  • The NBI (Neutral BGeam Injection) System for the Korea Superconducting Tokamak Advanced Research (KSTAR) is composed of ion sources, neutralizers, bending magnets, ion dumps, and calorimeter. The vacuum chamber, in which all of the beam line components are enclosed, is composed of differential pumping system for the effective transfer of the neutral beams. The needed pumping speeds of each of the divided vacuum chamber and the optimized gas flow rate ot the neutralizer were calculated with the help of the particle balance equations. The minimum gas flow rate to the ion sources for producing needed beam current (120kV, 65A, 78MW), the pressure distributions in the vacuum chamber for minimizing re-ionization loss, and the beam loss rate on the beam line components were used as the input in the calculation. Also the scenario for short pulse operation was determined by analysing the time dependent equations. It showed that beam extraction during less than 0.5 sec could be made only with TMP.

  • PDF

Gas Phase Proton Affinity, Basicity, and pKa Values for Nitrogen Containing Heterocyclic Aromatic Compounds

  • Hwang, Sun-Gu;Jang, Yun-Hee;Chung, Doo-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.585-588
    • /
    • 2005
  • Bipyridine and its derivatives have been widely used as the ligands in transition metal complexes. The proton affinities of pyridine derivatives were calculated using an ab initio quantum mechanical method (B3LYP with various double zeta and triple zeta basis sets) in combination with the Poisson-Boltzmann continuum solvation model. Van der Waals radii of the atoms in the heterocyclic rings for the solvation energy calculation were set to values determined to reproduce the $pK_a$ values of guanine and oxoguanine derivatives and that of chlorine was optimized to reproduce the experimental values of relating compounds. The $pK_a$ values for the heterocyclic ring compounds were in agreement with the experimental values with a mean unsigned error of 0.45 $pK_a$ units.

DFT Conformational Study of Calix[5]arene and Calix[4]arene: Hydrogen Bond

  • Kim, Kwang-Ho;Park, Seong-Jun;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1893-1897
    • /
    • 2008
  • We have performed DFT calculations to investigate the conformational characteristics and hydrogen bonds of the p-tert-butylcalix[5]arene (1) and p-tert-butylcalix[4]arene (2). The structures of different conformers of 1 were optimized by using B3LYP/6-31+G(d,p) method. The relative stability of the various conformers of 1 is in the following order: cone (most stable) > 1,2-alternate > partial-cone > 1,3-alternate. The relative stability of four conformers of 2 is in the following order: cone (most stable) > partial-cone > 1,2-alternate > 1,3-alternate. The primary factor affecting the relative stabilities of the various conformers of the 1 and 2 are the number and strength of the intramolecular hydrogen bonds. The hydrogen-bond distances are discussed based on different calculation methods.

Electronic State of ZnO doped with Al, Ga and In, Calculated by Density Functional Theory (범함수궤도법을 이용하여 계산한 Al, Ga, In이 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.218-221
    • /
    • 2004
  • The electronic state of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, was calculated using the density functional theory. In this study, the program used for the calculation on theoretical structures of ZnO and doped ZnO was Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The detail of electronic structure was obtained by the describe variational $X{\alpha}(DV-X{\alpha})$(DV-Xa) method, which is a sort of molecular orbital full potential method. The optimized crystal structures obtained by calculations were compared to the measured structure. The density of state and energy levels of dopant elements was shown and discussed in association with properties.

  • PDF