• 제목/요약/키워드: Optimized analysis

Search Result 3,458, Processing Time 0.037 seconds

하이브리드 이산화티탄의 자기조직체 형성공법을 이용하여 제조된 하이브리드 이산화티탄의 자외선차단 상승효과

  • Jo, Hyeon-Dae
    • Ceramist
    • /
    • v.19 no.3
    • /
    • pp.26-35
    • /
    • 2016
  • The purpose of this study is to find the optimum conditions for manufacturing titanium dioxide using a hybrid self-assembly forming method, to confirm the shape, properties and synergy effect of UV protection for hybrid titanium dioxide. Hybrid titanium dioxide, manufactured by forming self-assembly of different sizes consisting of two kinds of titanium dioxides, has micro titanium dioxide (250nm~300nm) for support material, Nano titanium dioxide (20~30nm) for surface material, coating support material. Adjustment experiments of $AlCl_3$ concentration and both titanium dioxide ratio were conducted to find the optimized conditions for the surface coating of titanium dioxide striking a negative charge, a sample made of the optimized process was confirmed through an optical analysis, particle size analysis, and potentiometric analysis. The SPF in-vitro value of the cosmetics samples containing hybrid titanium dioxide showed 15~30% higher levels than the cosmetics samples containing both titanium dioxides mixture.

Electronic Properties and Conformation Analysis of π-Conjugated Distyryl Benzene Derivaties

  • Kim, Cheol-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.330-336
    • /
    • 2002
  • A quantum-chemical investigation on the conformations and electronic properties of bis[2-{2-methoxy-4,6-di(t-butyl)phenyl}ethenyl]benzenes (MBPBs) as building block for ${\pi}$-conjugate polymer are performed in order to display the effects of t-butyl and methoxy group substitution and of kink(ortho and meta) linkage. The conjugation length of the polymers can be controlled by substituents and kink linkages of backbone. Structures for the molecules, o-, m-, and p-MBPBs as well as unsubstituted o-, m-, and p-DSBs were fully optimized by using semiempirical AM1, PM3 methods, and ab initio HF method with 3-21G(d) basis set. The potential energy curves with respect to the change of single torsion angle are obtained by using semiempirical methods and ab initio HF/3-21G(d) basis set. The curves are similar shape in the molecules with respect to the position of vinylene groups. It is shown that the conformations of the molecules are compromised between the steric repulsion interaction and the degree of the conjugation. Electronic properties of the molecules were obtained by applying the optimized structures and geometries to the ZINDO/S method. ZINDO/S analysis performed on the geometries obtained by AM1 method and HF/3-21G(d) level is reported. The absorption wavelength on the geometries obtained by AM1 method is much longer than that by HF/3-21G(d) level. The absorption wavelength of MBPBs are red shifted with comparison to that of corresponding DSBs in the same torsion angle because of electron donating substituents. The absorption wavelength of isomers with kink(orth and meta) linkage is shorter than that of para linkage.

Development of Hybrid OCB Beam for the Long-span Building Structures (장경간 건축구조를 위한 하이브리드 OCB보의 개발)

  • Lee, Doo-Sung;Kim, Sang-Yeon;Kim, Tae-Kyun
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2015
  • The building structure in Korea is planned to maximize the use of space in recent. The hybrid OCB(Optimized Composite Beam) beam is developed to take advantage of using the space. The OCB beam is composed of the steel H-beam section reinforced by open strands in negative moment zone and the pretensioned PSC concrete section in positive zone. Flexural behavior of typical architectural hybrid OCB beam section was investigated by F.E.M. The 15m, 20m, 30m OCB models were tested on nonlinear material and geometry under static loading system. Following results are obtained from the analysis; 1)The OCB beam develop initial flexural cracking over full service loading. 2)Overall deflections of OCB beam under the service loads are less than those of the allowable limits in KCI Code(2012). 3)The ultimate load capacity get over the nominal strength of the OCB main section. The OCB beam is verified of structural reliability from the finite element analysis.

Topology Optimization of Railway Brake Pad by Contact Analysis (접촉해석에 의한 철도차량용 제동패드의 형상 최적화)

  • Goo, Byeong-Choon;Na, In-Kyun
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.177-182
    • /
    • 2014
  • To stop a high speed train running at the speed of 300 km/h, the disc brake for the train should be able to dissipate enormous kinetic energy of the train into frictional heat energy. Sintered pin-type metals are mostly used for friction materials of high speed brake pads. A pad comprises several friction pins, and the topology, length, flexibility, composition, etc. have a great influence on the tribological properties of the disc brake. In this study, the topology of the friction pins in a pad was our main concern. We presented the optimization of the topology of a railcar brake pad with nine-pin-type friction materials by thermo-mechanical contact analysis. We modeled the brake pad with/without a back plate. To simulate a continuous braking, the pad or friction materials were rotated at constant velocity on the friction surface of the disc. We varied the positions of the nine friction materials to compare the temperature distributions on the disc surface. In a non-optimized brake pad, the distance between two neighboring friction materials in the radial direction from the rotational center of the disc was not equal. In an optimized pad, the distance between two neighboring friction materials in the radial direction was equal. The temperature distribution on the disc surface fluctuated more for the former than the latter. Optimizing the pad reduced the maximum temperature of the brake disc by more than 10%.

Enhanced Lipid Production of Chlorella sp. HS2 Using Serial Optimization and Heat Shock

  • Kim, Hee Su;Kim, Minsik;Park, Won-Kun;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.136-145
    • /
    • 2020
  • Chlorella sp. HS2, which previously showed excellent performance in phototrophic cultivation and has tolerance for wide ranges of salinity, pH, and temperature, was cultivated heterotrophically. However, this conventional medium has been newly optimized based on a composition analysis using elemental analysis and ICP-OES. In addition, in order to maintain a favorable dissolved oxygen level, stepwise elevation of revolutions per minute was adopted. These optimizations led to 40 and 13% increases in the biomass and lipid productivity, respectively (7.0 and 2.25 g l-1d-1 each). To increase the lipid content even further, 12 h heat shock at 50℃ was applied and this enhanced the biomass and lipid productivity up to 4 and 17% respectively (7.3 and 2.64 g l-1d-1, each) relative to the optimized conditions above, and the values were 17 and 14% higher than ordinary lipid-accumulating N-limitation (6.2 and 2.31 g l-1d-1). On this basis, heat shock was successfully adopted in novel Chlorella sp. HS2 cultivation as a lipid inducer for the first time. Considering its fast and cost-effective characteristics, heat shock will enhance the overall microalgal biofuel production process.

Sensitivity Analysis and Optimization of Design Variables Related to an Algorithm for Loss of Balance Detection (균형상살 검출 알고리즘에서 검출과 관련된 설계변수의 민감도 해석 몇 최적화)

  • Ko, B.K.;Kim, K.H.;Son, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • This study suggested an optimized algorithm for detecting the loss of balance(LOB) in the seated position. And the sensitivity analysis was performed in order to identify the role of each design variable in the algorithm. The LOB algorithm consisted of data processing of measured signals, an internal model of the central nervous system and a control error anomaly(CEA) detector. This study optimized design variables of a CEA detector to obtain improved values of the success rate(SR) of detecting the LOB and the margin time(MT) provided for preventing the falling. Nine healthy adult volunteers were involved in the experiments. All the subjects were asked to balance their body in a predescribed seated posture with the rear legs of a four-legged wooden chair. The ground reaction force from the right leg was measured from the force plate while the accelerations of the chair and the head were measured from a couple of piezoelectric accelerometers. The measured data were processed to predict the LOB using a detection algorithm. Variables S2, h2 and hd are related to the detector: S2 represents a data selecting window, h2 a time shift and hd an operating period of the LOB detection algorithm. S2 was varied from 0.1 to 10 sec with an increment of 0.1 sec, and both h2 and hd were varied from 0.01 to 1.0 sec with an increment of 0.01 sec. It was found that the SR and MT were increased by up to 9.7% and 0.497 sec comparing with the previously published case when the values of S2, h2 and hd were set to 4.5, 0.3 and 0.2 sec, respectively. Also the results of sensitivity analysis showed that S2 and h2 had considerable influence on the SR while these variables were not so sensitive to the MT.

The Crack Analysis and Redesign of Horizontal Fin of F-5E/F's External Fuel Tank (F-5E/F 외부 연료탱크 수평 핀 균열 분석 및 재설계)

  • Kang, Chi-Hang;Yoon, Young-In;Jung, Dae-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • In this work the replacement material for magnesium alloy was investigated and an optimized design was suggested for the horizontal fin of a fighter's external fuel tank. For the replacement of magnesium alloy, Aluminum alloy, AL 2034-T351, was selected by considering material properties and its procurement. The strength and fracture toughness properties of AL 2034-T351 are stronger than those of magnesium alloy, but the specific weight of AL 2034-T351 is heavier than that of magnesium alloy by 65%. To meet the allowable limit of C.G. shift in the tank, the design of horizontal fin was optimized by reducing the original shape by 20% and resizing the maximum thickness to 7 mm. From the results of the static and dynamic stress analysis for improving the safety factor of the joint section and the joint hole, the radius of curvature in the aft joint section of the new fin was designed as 8.5mm.

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

SimulationX®-based Modeling for Valve-Plate Notch Design of Variable Swash-Plate Axial Piston Pump (SimulationX®를 이용한 가변 사판식 액셜 피스톤 펌프의 밸브플레이트 노치 최적화에 관한 연구)

  • Lee, San Seong;Chung, Won Jee;Lim, Dong Jae;Cha, Tae Hyung;Kim, Soo Tae;Lee, Jeong Sil;Choi, Kyung Shin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.104-112
    • /
    • 2018
  • Considering the shape of a valve plate in design is important for reducing the pulsation phenomenon, which is a negative factor in pump performance. The purpose of this study is to propose an optimized method for a valve-plate V-type notch of a piston pump by modeling and simulation. The method uses $SimulationX^{(R)}$, a commercial hydraulic analysis program, and to provide data for the designing of the notch. The opening areas are determined by performing kinematic analysis of the notch part where the opening area changes rapidly. After applying the result analysis, the main effects on maximum pressure pulsation and maximum backflow according to the notch design factors are analyzed by using the full factorial method of experimental design. The optimized solutions are derived for the notch design variables, based on the analyzed data.

Optimized Low-Switching-Loss PWM and Neutral-Point Balance Control Strategy of Three-Level NPC Inverters

  • Xu, Shi-Zhou;Wang, Chun-Jie;Han, Tian-Cheng;Li, Xue-Ping;Zhu, Xiang-Yu
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.702-713
    • /
    • 2018
  • Power loss reduction and total harmonic distortion(THD) minimization are two important goals of improving three-level inverters. In this paper, an optimized pulse width modulation (PWM) strategy that can reduce switching losses and balance the neutral point with an optional THD of three-level neutral-point-clamped inverters is proposed. An analysis of the two-level discontinuous PWM (DPWM) strategy indicates that the optimal goal of the proposed PWM strategy is to reduce switching losses to a minimum without increasing the THD compared to that of traditional SVPWMs. Thus, the analysis of the two-level DPWM strategy is introduced. Through the rational allocation of the zero vector, only two-phase switching devices are active in each sector, and their switching losses can be reduced by one-third compared with those of traditional PWM strategies. A detailed analysis of the impact of small vectors, which correspond to different zero vectors, on the neutral-point potential is conducted, and a hysteresis control method is proposed to balance the neutral point. This method is simple, does not judge the direction of midpoint currents, and can adjust the switching times of devices and the fluctuation of the neutral-point potential by changing the hysteresis loop width. Simulation and experimental results prove the effectiveness and feasibility of the proposed strategy.