• Title/Summary/Keyword: Optimized analysis

Search Result 3,475, Processing Time 0.04 seconds

Performance Analysis on a Multi-Pass Multi-Branch Heat Exchanger According to Pass Arrangement (다패스 다분지 열교환기의 패스 수에 따른 성능 분석)

  • Kim Min-Soo;Lee Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.741-748
    • /
    • 2006
  • This paper numerically investigates the effects of pass arrangement on the flow distribution characteristics and the performance of a multi-pass multi-branch heat exchanger. Four cases of pass arrangement (2, 4, 6, 8 pass) are chosen to select a proper pass arrangement. A JF factor is used as an evaluation characteristic value to consider the heat transfer and the pressure drop. The present results indicate that 4-pass heat exchanger shows the best performance, and the design parameters in 4-pass heat exchanger are optimized. The design parameters are the locations of the inlet, outlet and separator, and are optimized using a response surface methodology. The JF factor of the optimum model is increased by about 9.3%, compared to that of the reference model (2-pass heat exchanger).

Optimized Insulation Thickness of the Refrigerated Warehouse with Different Envelope Structures and Insulation Materials by L.C.C. Analysis (생애비용 분석을 통한 외벽 및 단열재료 종류별 냉동냉장창고 외피의 적정 단열두께 산정)

  • 강승희;구보경;황혜주;석호태;안홍섭;송승영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.372-381
    • /
    • 2003
  • This study aims to find out the optimized insulation thickness of refrigerated warehouse with different envelope structures (RC and PC wall) and insulation materials (urethane and icynene). Each of them is compared according to the thickness of insulation (100, 150, 200 mm/50 or 250 mm) and the temperature of cold storage room (0, -6, -15$^{\circ}C$). As results, it is proved to have the best economical efficiency in life cycle cost when PC wall with thickness of 100 mm (0 and -6$^{\circ}C$) and 150 m (-15$^{\circ}C$) urethane, respectively, are applied.

Design of Optimized Fuzzy Cascade controller Based on Partical Swarm Optimization for Ball & Beam System (볼빔 시스템에 대한 입자 군집 최적화를 이용한 최적 퍼지 직렬형 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2322-2329
    • /
    • 2008
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of particle swarm optimization(PSO) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling facrors) of each fuzzy controller using PSO. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on PSO, is presented in comparison with the conventional PD cascade controller based on serial genetic alogritms.

Characteristics of Universal Motor for the armature teeth number (Universal Motor의 전기자 치의 수에 따른 특성)

  • Kim, Dong-Pyo;Lee, Eun-Suk;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.118-120
    • /
    • 1999
  • This paper describes a new procedure to develop a systems model of a universal motor based on finite element analysis. The purpose of this paper optimized fabrication of Universal Motor for improving its efficiency and performance and driving range. To do this, various design parameters are set such as a number of teeth and stator shape, etc. As results, the optimized model has made good improvement compared with those of the initial.

  • PDF

FEM analysis of 700W Universal Motor and Device to Optimal Design (700 W 급 Universal Motor의 유한요소 해석과 최적설계 방향)

  • Song, Hyuk-Jin;Shin, Pan-Seok;Koo, Jin-Ho;Lee, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.247-249
    • /
    • 1998
  • This paper has proposed an optimized universal motor for improving its performance and cost using FEM program. To do this, various design parameters are set such as air gap length, shape of stator and pole shoe, rotor slot, rotor shaft diameter, etc. As results, the optimized model has made good improvement compared with those of the initial.

  • PDF

Research Trends on Physical Layers in Wireless Communications Using Machine Learning (무선 통신 물리 계층의 기계학습 활용 동향)

  • Choi, Y.H.;Kang, H.D.;Kim, D.Y.;Lee, J.H.;Park, Y.O.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.2
    • /
    • pp.39-47
    • /
    • 2018
  • The fundamental problem of communication is that of transmitting a message from a source to a destination over a channel through the use of a transmitter and receiver. To derive a theoretically optimal solution, the transmitter and receiver can be divided into several processing blocks, with each component analyzed and optimized. The idea of machine learning (or deep learning) communications systems goes back to the original definition of the communi-cation problem, and optimizes the transmitter and receiver jointly. Although today's systems have been optimized over the last decades, and it seems difficult to compete with their performance, deep learning based communication is attractive owing to its simplicity and the fact that it can learn to communicate over any type of channel without the need for mathematical modeling or analysis.

Numerical Analysis of Unsteady Flow around a Transversely Oscillating Circular Cylinder

  • Moon, Ji-Soo;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • The relationship between the excitation frequency and the vortex shedding frequency is analyzed during the oscillation of the circular cylinder. Two-dimension unsteady Navier-Stoke's equation is calculated by using the Optimized High Order Compact (OHOC) scheme. The flow condition is Mach number 0.3 and Reynold's number 1000. From the results acquired by calculation, it can be inferred that, when the excitation frequency is near the vortex shedding frequency at the fixed cylinder wake, the oscillation frequency of lift and drag coefficients appears to lock-on. The lock-on refers to a phenomenon in which the aerodynamic coefficient appears as one primary oscillation frequency through excitation and its amplitude is amplified. In the non-lock-on zone, the excitation frequency is not in the lock-on mode anymore and beat is formed in which two or more primary oscillation frequencies of the aerodynamic coefficient are mixed together.

Production of Eco-friendly Aminotosan® Fertilizer from Waste Livestock Blood using Chitosan Coagulation

  • Kim, Hyeon-Jeong;Shin, Myung-Seop;Jeon, Yong-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.724-730
    • /
    • 2015
  • The aim of this study was to produce Aminotosan$^{(R)}$ fertilizer using optimized chitosan coagulant from waste livestock blood. Amino-acid fertilizer was produced by pretreated livestock blood. Chitosan coagulant was aggregated with amino-acid fertilizer to produce Aminotosan$^{(R)}$. Optimized coagulation conditions were set using chitosan coagulant such as 10% citric acid and 500 ppm chitosan coagulant by analysis of CST and TTF. The efficiency of coagulation by chitosan coagulant under the optimal conditions was better than chemical coagulants. After solid/liquid separation for coagulated amino-acid fertilizer, Aminotosan$^{(R)}$ fertilizer which added eco-friendly and aesthetic functions was produced.

Design of an Nd:YAG Slab Structure for a High-power Zigzag Slab Laser Amplifier Based on a Wavefront Simulation

  • Shin, Jae Sung;Cha, Yong-Ho;Cha, Byung Heon
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.236-242
    • /
    • 2019
  • An Nd:YAG slab structure was designed for a high-power zigzag slab laser amplifier based on computational simulation of the wavefront distortion. For the simulation, the temperature distribution in the slab was calculated at first by thermal analysis. Then, the optical path length (OPL) was obtained by a ray tracing method for the corresponding refractive index variation inside the slab. After that, the OPL distribution of the double-pass amplified beam was calculated by summing the results obtained for the first and second passes. The amount of wavefront distortion was finally obtained as the peak-to-valley value of the OPL distribution. As a result of this study, the length and position of the gain medium were optimized by minimizing the transverse wavefront distortion. Under the optimized conditions, the transverse wavefront distortion of the double-pass amplified beam was less than $0.2{\mu}m$ for pump power of 14 kW.

Optimization of Design of Plasma Process for Water Treatment using Response Surface Method (반응표면분석법을 이용한 수처리용 플라즈마 공정 설계의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.617-624
    • /
    • 2011
  • In order to confirm the creation of the OH radical which influences to RNO bleaching processes, it experimented using laboratory reactor of dielectric barrier discharge plasma (DBDP). The experiments performed in about 4 kind process variables (diameter of ground electrode, diameter of discharge electrode, diameter of quartz tube and effect of air flow rate) which influence to process. In order to examine optimum conditions of design factors as shown in Box-Behnken experiment design, ANOVA analysis was conducted against four factors. The actual RNO removal at optimized conditions under real design constraints were obtained, confirming Box-Behnken results. Optimized conditions under real design constraints were obtained for the highest desirability at 1, 1 mm diameter of ground and discharge electrode, 6 mm diameter of quartz tube and 5.05 L/min air flow rate, respectively.