• 제목/요약/키워드: Optimized Network

검색결과 1,006건 처리시간 0.033초

인공지능을 이용한 휴머노이드 로봇의 자세 최적화 (Optimization of Posture for Humanoid Robot Using Artificial Intelligence)

  • 최국진
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.

Illumination correction via improved grey wolf optimizer for regularized random vector functional link network

  • Xiaochun Zhang;Zhiyu Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.816-839
    • /
    • 2023
  • In a random vector functional link (RVFL) network, shortcomings such as local optimal stagnation and decreased convergence performance cause a reduction in the accuracy of illumination correction by only inputting the weights and biases of hidden neurons. In this study, we proposed an improved regularized random vector functional link (RRVFL) network algorithm with an optimized grey wolf optimizer (GWO). Herein, we first proposed the moth-flame optimization (MFO) algorithm to provide a set of excellent initial populations to improve the convergence rate of GWO. Thereafter, the MFO-GWO algorithm simultaneously optimized the input feature, input weight, hidden node and bias of RRVFL, thereby avoiding local optimal stagnation. Finally, the MFO-GWO-RRVFL algorithm was applied to ameliorate the performance of illumination correction of various test images. The experimental results revealed that the MFO-GWO-RRVFL algorithm was stable, compatible, and exhibited a fast convergence rate.

파이프라인 네트워킹 최적화 모델의 개발 및 활용 (Development and Application of Pipeline Network Optimization Simulator)

  • 성원모;권오광;이정환;허대기
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.56-63
    • /
    • 1997
  • 본 연구에서는 실제현장에 활용할 수 있는 가스파이프라인 네트워크의 최적화 모델을 개발하기 위해 먼저 구조 설계에 있어서 네트워크 알고리즘 중 MCST(Minimum Cost Spanning Tree) 알고리즘을 도입하여 전반적인 구조를 결정하고, 기존 방법의 단점을 보완하기 위해 Constrained Derivative 방법을 적용하였다. 또한 모델 개발 시, 압축기$\cdot$밸브등의 갑작스런 운전상태의 변화와 파이프의 파열 둥으로 인한 유동저해 현상을 예측할 수 있는 파이프라인 해석모델과 연계할 수 있도록 고려하여 설계하였다. 각 절점과 간선간의 압력 및 유량, 즉 파이프라인 배관망에서 필요한 수요량을 적절히 공급할 수 있는 파이프라인 망의 직경과 길이를 최소의 비용으로 결정하는 복합형 파이프라인 네트워크 최적설계 모델을 개발하였다 개발된 모델을 전형적인 천연가스 파이프라인 네트워크에 적용하여 최적설계를 수행한 결과, 보다 작은 파이프 직경과 낮은 절점 압력으로도 각 절점에서의 수요량을 공급할 수 있도록 설계할 수 있었으며, 원래의 시스템과 비교하여 약 $40\%$정도의 비용 절감효과를 볼 수 있었다. 또한, 기존의 국내 수도권 배관망에 대해 본 모델을 적용하여 새로운 설계모형을 제안함으로써 초기설계나 향우 추가 확장되는 부분의 배관망에 대해서도 경제성을 고려하여 최소비용의 네트워크 구성을 할 수 있음을 확인하였다.

  • PDF

진화론적 알고리즘에 의한 퍼지 다항식 뉴론 기반 고급 자기구성 퍼지 다항식 뉴럴 네트워크 구조 설계 (Design of Advanced Self-Organizing Fuzzy Polynomial Neural Networks Based on FPN by Evolutionary Algorithms)

  • 박호성;오성권;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.322-324
    • /
    • 2005
  • In this paper, we introduce the advanced Self-Organizing Fuzzy Polynomial Neural Network based on optimized FPN by evolutionary algorithm and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed model gives rise to a structurally and parametrically optimized network through an optimal parameters design available within Fuzzy Polynomial Neuron(FPN) by means of GA. Through the consecutive process of such structural and parametric optimization, an optimized and flexible the proposed model is generated in a dynamic fashion. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

Genetically Optimized Self-Organizing Fuzzy Polynomial Neural Networks based on Information Granulation and Evolutionary Algorithm

  • 박호성;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.297-300
    • /
    • 2005
  • In this study, we proposed genetically optimized self-organizing fuzzy polynomial neural network based on information granulation and evolutionary algorithm (gdSOFPNN), develop a comprehensive design methodology involving mechanisms of genetic optimization. The proposed gdSOFPNN gives rise to a structural Iy and parametrically optimized network through an optimal parameters design available within FPN (viz. the number of input variables, the order of the polynomial, input variables, the number of membership functions, and the apexes of membership function). Here, with the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The performance of the proposed gdSOFPNN is quantified through experimentation that exploits standard data already used in fuzzy modeling.

  • PDF

Optimized Polynomial Neural Network Classifier Designed with the Aid of Space Search Simultaneous Tuning Strategy and Data Preprocessing Techniques

  • Huang, Wei;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.911-917
    • /
    • 2017
  • There are generally three folds when developing neural network classifiers. They are as follows: 1) discriminant function; 2) lots of parameters in the design of classifier; and 3) high dimensional training data. Along with this viewpoint, we propose space search optimized polynomial neural network classifier (PNNC) with the aid of data preprocessing technique and simultaneous tuning strategy, which is a balance optimization strategy used in the design of PNNC when running space search optimization. Unlike the conventional probabilistic neural network classifier, the proposed neural network classifier adopts two type of polynomials for developing discriminant functions. The overall optimization of PNNC is realized with the aid of so-called structure optimization and parameter optimization with the use of simultaneous tuning strategy. Space search optimization algorithm is considered as a optimize vehicle to help the implement both structure and parameter optimization in the construction of PNNC. Furthermore, principal component analysis and linear discriminate analysis are selected as the data preprocessing techniques for PNNC. Experimental results show that the proposed neural network classifier obtains better performance in comparison with some other well-known classifiers in terms of accuracy classification rate.

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

유전론적 최적 퍼지 다항식 뉴럴네트워크와 다변수 소프트웨어 공정으로의 응용 (Genetically Optimized Fuzzy Polynomial Neural Networks and Its Application to Multi-variable Software Process)

  • 이인태;오성권;김현기;이동윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.152-154
    • /
    • 2005
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed genetic algorithms-based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

  • PDF