• Title/Summary/Keyword: Optimized NC Code

Search Result 9, Processing Time 0.03 seconds

NC Code Optimization Based on an Improved Cutting Force Model (향상된 절삭력 모델 기반의 NC 코드 최적화)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.37-42
    • /
    • 1997
  • Off-line feed rate scheduling is an advanced methodology to automatically determine optimum feed rates for the optimization of NC code. However, the present feed rate scheduling systems have lim~tations to generate the optimized NC codes because they use the material removal rate or non-generalized cutting force model. In this paper, a feed rate scheduling system based on an improved cutting force model that can predrct cutting forces exactly in general machining was presented. Original blocks of NC code were divided to small ones with the modified feed rates to adjust the peak value of cutting forces to a constant vale. The characteristic of acceleration and deceleration for a given machrne tool was considered when off-line feed rate scheduhng was performed. Software for the NC code optimization was developed and applied to pocket machining simulation.

  • PDF

A Study on Tool Path Error Control for Disk Cams in a Five-Axis CNC Machining Center

  • Kwon, Soon-Man;Shin, Joong-Ho;Yoo, Geun-Jong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1012-1016
    • /
    • 2004
  • In this paper, we propose a simple but optimized NC code generating technique for disk cams by means of tool path error control in a five-axis CNC machining center. Using the geometric theorem of the triangle made between manufacturing points and error checkpoint, the tool path error has been studied for disk cams profile generation and an improvement in the profile has been obtained. Then, based on the present manufacturing approach a computer program is developed on $C^{++}$ language to perform and to verify the shape design, the manufacturing simulation, and the optimized generation of the NC code.

  • PDF

A Study on Development of Automatic Westing Software by Vectorizing Technique (벡터라이징을 이용한 자동부재배치 소프트웨어 개발에 관한 연구)

  • Lho T.J.;Kang D.J.;Kim M.S.;Park Jun-Yeong;Park S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.748-753
    • /
    • 2005
  • Among processes to manufacture parts from footwear materials like upper leathers, one of the most essential processes is the cutting one optimally arranging lots of parts on raw footwear materials and cutting. A new nesting strategy was proposed for the 2-dimensional part layout by using a two-stage approach, where which can be effectively used for water jet cutting. In the initial layout stage, a SOAL(Self-Organization Assisted Layout) based on the combination of FCM(Fuzzy C-Means) and SOM was adopted. In the layout improvement stage, SA(Simulated Annealing) based approach was adopted for a finer layout. The proposed approach saves much CPU time through a two-stage approach scheme, while other annealing-based algorithm so far reported fur a nesting problem are computationally expensive. The proposed nesting approach uses the stochastic process, and has a much higher possibility to obtain a global solution than the deterministic searching technique. We developed the automatic nesting software of NST(ver.1.1) software for footwear industry by implementing of these proposed algorithms. The NST software was applied by the optimized automatic arrangement algorithm to cut without the loss of leathers. if possible, after detecting damage areas. Also, NST software can consider about several features in not only natural loathers but artificial ones. Lastly, the NST software can reduce a required time to implement generation of NC code. cutting time, and waste of raw materials because the NST software automatically performs parts arrangement, cutting paths generation and finally NC code generation, which are needed much effect and time to generate them manually.

  • PDF

A Study on the Optimized Biarc Curve Fitting of Involute Curve (인벌류트 곡선의 Biarc Curve Fitting 최적화에 관한 연구)

  • Cho, Seung-Rae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.71-78
    • /
    • 1999
  • The determination of the optimum biarc curve passing through a given set of points along involute curve is studied. The method adopted is that of finding the optimum number of span and the optimum length of the span such that error between the biarc curve and involute curve minimum. Iterative method is effectively used to find the optimim number and length of the span on involute curve with reduced length of NC-code.

  • PDF

A Study on feedrate Optimization System for Cutting Force Regulation (절삭력 추종을 위한 이송속도 최적화 시스템에 관한 연구)

  • 김성진;정영훈;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.214-222
    • /
    • 2003
  • Studies on the optimization of machining process can be divided into two different approaches: off-line feedrate scheduling and adaptive control. Each approach possesses its respective strong and weak points compared to each other. That is, each system can be complementary to the other. In this regard, a combined system, which is a feedrate control system fur cutting force optimization, was proposed in this paper to make the best of each approach. Experimental results show that the proposed system could overcome the weak points of the off-line feedrate scheduling system and the adaptive control system. In addition, from the figure, it can be confirmed that the off-line feedrate scheduling technique can improve the machining quality and can fulfill its function in the machine tool which has a adaptive controller.

Study on Optimized Machining of Duralumin using AFC (AFC를 이용한 두랄루민의 최적화 가공에 관한 연구)

  • Kang, Min-Seog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Studies on the optimizations of machining processes use two different methods. The first is feed control in real-time by spindle load in a machine tool. The second is feed scheduling in NC code control by material removal rate using a CAD/CAM system. Each approach possesses its respective merits and issues compared to the other. That is, each method can be complementary to the other. The purpose of the study is to improve the productivity of the bulkhead, an aircraft Duralumin structure. In this paper, acceleration or deceleration of cutting tool by spindle load data is achieved using adaptive feed control macro programming in a machine tool.

Development of Accurate Cutting Simulation and Feedrate Scheduling System for CNC Machining (CNC 가공의 정밀 절삭 시뮬레이션 및 이송속도 스케줄링 시스템 개발)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.370-375
    • /
    • 2004
  • This paper presents an accurate cutting simulation and feedrate scheduling system for CNC machining. This system is composed of a cutting simulation part and a feedrate scheduling part. The cutting simulation part computes the geometric informations and calculates the cutting forces in CNC machining. The cutting force model using cutting-condition-independent coefficients was introduced for flat end milling and ball end milling. The feedrate scheduling part divides original blocks of NC code into smaller ones with optimized feedrates to adjust the peak value of cutting forces to reference forces. Some machining examples show that the developed system can control the cutting force at desired levels.

  • PDF

Optimization cutting speed in high speed ball end milling (고속 볼 엔드밀 가공에서 절삭속도 최적화)

  • 김경균;강명창;정융호;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.895-898
    • /
    • 2001
  • This paper presents an optimization cutting speed(OCS) program developed to improve the machining precision and tool life in high speed machining using ball end milling. This program optimized the cutting speed that is changing at any time in free surface machining of an automobile part like a connecting load die. The technique of optimization cutting speed makes the CAD/CAM-generated NC code go through a reverse post process, conducts cutting simulation, and obtain the effective tool diameter of the ball end milling. Then it changes the spindle revolution to within the range of critical cutting speed fit for the material of the workpieces depending upon the effective tool diameter. In this study, the machining precision and tool life were compared for the two connecting load dies processed using the general cutting method and the proposed optimization cutting speed technique, respectively.

  • PDF

Integrated NURBS Surface Interpolator Considering Both Rough and Finish Cuts (황삭 및 정삭을 고려한 통합형 NURBS 곡면 인터폴레이터)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1958-1966
    • /
    • 2003
  • Three-axis CNC surface machining entails a series of processes including rough cutting, intermediate cutting and finish cutting for a reference surface defined in CAD/CAM. This study is targeting development of an integrated NURBS surface interpolator that can incorporate rough, intermediate and finish cutting processes. In each process, volume to be removed and cutting condition are different according to the shape of a part to be machined and the reference surface. Accordingly, the proposed NURBS surface interpolator controls motion in real-time optimized for the machining conditions of each process. In this paper, a newly defined set of G-codes is proposed such that NURBS surface machining through CNC is feasible with minimal information on the surface composition. To verify the usefulness of the proposed interpolator, through computer simulations on NURBS surface machining, total machining time, size of required NC data and cutting force variations are compared with the existing method.