• 제목/요약/키워드: Optimized H Type

검색결과 165건 처리시간 0.023초

Computational Fluid Dynamics를 활용한 점/접착 생산 공정 내 Jacketed Vessel 설계 최적화 (Optimization of Plain Jacked Vessel Design in Adhesive Production Process Using Computational Fluid Dynamics)

  • 주종효;박현도;조형태;김정환
    • 공업화학
    • /
    • 제31권6호
    • /
    • pp.596-602
    • /
    • 2020
  • 점/접착제 생산 공정은 배합 과정에서 mineral insulated (MI) cable을 통해 내부 용액을 76 ℃까지 가열 및 혼합 후 제품 출하를 위해 30 ℃까지 상온 냉각을 진행한다. MI cable을 이용한 반응기의 경우, 냉각시간이 평균 10 h 소요되어 생산효율이 낮은 문제점이 있지만, jacketed vessel을 설치하면 위의 문제를 효과적으로 해결할 수 있다. 그러나 jacketed vessel의 종류가 다양해 jacket을 설치하기 전, 배합 공정조건에 적합한 종류를 찾아야 한다. 본 연구에서는 생산효율에 영향을 주는 냉각시간을 최소화하기 위해 computational fluid dynamics (CFD)를 이용하여 jacket 종류에 따른 냉각시간을 비교해 공정에 적합한 jacketed vessel 모델을 개발하고, 점/접착제 생산 공정에 최적화된 jacketed vessel을 설계하였다. 연구 결과, jacket의 높이가 같을 때, half-pipe coil jacket보다 plain jacket의 냉각 성능이 32.7% 더 우수하였고, plain jacket에 60% spiral baffle을 설치하여 냉각 공정에 이용할 경우 냉각시간을 80.4%, 작업시간을 25.1% 단축 가능하다.

Heat transfer analysis in sub-channels of rod bundle geometry with supercritical water

  • Shitsi, Edward;Debrah, Seth Kofi;Chabi, Silas;Arthur, Emmanuel Maurice;Baidoo, Isaac Kwasi
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.842-848
    • /
    • 2022
  • Parametric studies of heat transfer and fluid flow are very important research of interest because the design and operation of fluid flow and heat transfer systems are guided by these parametric studies. The safety of the system operation and system optimization can be determined by decreasing or increasing particular fluid flow and heat transfer parameter while keeping other parameters constant. The parameters that can be varied in order to determine safe and optimized system include system pressure, mass flow rate, heat flux and coolant inlet temperature among other parameters. The fluid flow and heat transfer systems can also be enhanced by the presence of or without the presence of particular effects including gravity effect among others. The advanced Generation IV reactors to be deployed for large electricity production, have proven to be more thermally efficient (approximately 45% thermal efficiency) than the current light water reactors with a thermal efficiency of approximately 33 ℃. SCWR is one of the Generation IV reactors intended for electricity generation. High Performance Light Water Reactor (HPLWR) is a SCWR type which is under consideration in this study. One-eighth of a proposed fuel assembly design for HPLWR consisting of 7 fuel/rod bundles with 9 coolant sub-channels was the geometry considered in this study to examine the effects of system pressure and mass flow rate on wall and fluid temperatures. Gravity effect on wall and fluid temperatures were also examined on this one-eighth fuel assembly geometry. Computational Fluid Dynamics (CFD) code, STAR-CCM+, was used to obtain the results of the numerical simulations. Based on the parametric analysis carried out, sub-channel 4 performed better in terms of heat transfer because temperatures predicted in sub-channel 9 (corner subchannel) were higher than the ones obtained in sub-channel 4 (central sub-channel). The influence of system mass flow rate, pressure and gravity seem similar in both sub-channels 4 and 9 with temperature distributions higher in sub-channel 9 than in sub-channel 4. In most of the cases considered, temperature distributions (for both fluid and wall) obtained at 25 MPa are higher than those obtained at 23 MPa, temperature distributions obtained at 601.2 kg/h are higher than those obtained at 561.2 kg/h, and temperature distributions obtained without gravity effect are higher than those obtained with gravity effect. The results show that effects of system pressure, mass flowrate and gravity on fluid flow and heat transfer are significant and therefore parametric studies need to be performed to determine safe and optimum operating conditions of fluid flow and heat transfer systems.

비수계 용매하에서 다양한 분산인자 및 실란 표면개질에 의해 제조된 Al2O3 나노졸의 분산 특성 (Dispersion Property of Al2O3 Nanosol Prepared by Various Dispersion Factors and Silane Modification under Non-Aqueous Solvent)

  • 나호성;박민경;임형미;김대성
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.733-740
    • /
    • 2016
  • $Al_2O_3$ nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of $Al_2O_3$ powders used were prepared by thermal decomposition method from aluminum ammonium sulfate$(AlNH_4(SO_4)_2)$ while controlling the calcination temperature. $Al_2O_3$ sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the $Al_2O_3$ sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, $Al_2O_3$ sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the $Al_2O_3$ particles. In order to observe the dispersion property of $Al_2O_3$ sol under NMP solvent, $Al_2O_3$ sol dispersed under ethanol solvent was modified and solvent-exchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the $Al_2O_3$ powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.

포도 송이가지를 이용한 레스베라트롤의 추출 및 항산화 활성 (Resveratrol Extraction from Grape Fruit Stem and its Antioxidant Activity)

  • 조철희;김소영;유귀재;손민희;박근형;임병락;김동청;채희정
    • Applied Biological Chemistry
    • /
    • 제51권1호
    • /
    • pp.11-16
    • /
    • 2008
  • 폐기물로 버려지는 식품가공 부산물의 부가가치를 높여 포도 유래 기능성 소재를 생산하기 위한 목적으로 포도 송이가지로부터 레스베라트롤의 추출 조건을 최적화하였고 포도 송이가지 추출물(grape fruit stem extract, GFSE)의 생리활성을 평가하였다. 총 폴리페놀 및 레스베라트롤의 추출 조건으로서 추출 용매(메탄올과 에탄올), 시료와 용매의 처리 비율(w/v), 추출 온도 및 추출 시간이 레스베라트롤 추출 수율에 미치는 영향을 실험적으로 검토하고 통계프로그램을 이용하여 유의성을 평가하였다. 포도 송이가지로부터의 레스베라트롤 추출 조건을 최적화 한 결과, 80%의 에탄올에서 1:lO(w/v)의 용매의 비로 $60^{\circ}C$에서 90분을 추출하는 것이 가장 높은 추출수율을 나타냈다. 또한 포도 송이가지 추출물(GFSE)과 다른 항산화 물질의 생리활성 비교분석을 실시하였다. DPPH법에 의한 전지공여능과 SOD 유사활성으로 측정한 항산화 활성분석결과, 포도 송이가지 추출물은 비교물질로 사용된 항산화 물질들에 비해 높은 항산화능을 보였다. 결과적으로 본 연구에서 제조된 포도 송이가지 추출물은 항산화능이 높은 건강기능식품 및 화장품 소재로 주목받고 있는 레스베라트롤 소재로서 사용할 수 있음을 확인하였다.

유청단백질로 만들어진 식품포장재에 관한 연구

  • 김성주
    • 한국유가공학회:학술대회논문집
    • /
    • 한국유가공기술과학회 2002년도 제54회 춘계심포지움 - 우유와 국민건강
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF