• Title/Summary/Keyword: Optimized Approximation

Search Result 89, Processing Time 0.024 seconds

Numerical characterizations of a piezoelectric micromotor using topology optimization design

  • Olyaie, M. Sadeghbeigi;Razfar, M.R.
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • This paper presents the optimum load-speed diagram evaluation for a linear micromotor, including multitude cantilever piezoelectric bimorphs, briefly. Each microbeam in the mechanism can be actuated in both axial and flexural modes simultaneously. For this design, we consider quasi-static and linear conditions, and a relatively new numerical method called the smoothed finite element method (S-FEM) is introduced here. For this purpose, after finding an optimum volume fraction for piezoelectric layers through a standard numerical method such as quadratic finite element method, the relevant load-speed curves of the optimized micromotor are examined and compared by deterministic topology optimization (DTO) design. In this regard, to avoid the overly stiff behavior in FEM modeling, a numerical method known as the cell-based smoothed finite element method (CS-FEM, as a branch of S-FEM) is applied for our DTO problem. The topology optimization procedure to find the optimal design is implemented using a solid isotropic material with a penalization (SIMP) approximation and a method of moving asymptotes (MMA) optimizer. Because of the higher efficiency and accuracy of S-FEMs with respect to standard FEMs, the main micromotor characteristics of our final DTO design using a softer CS-FEM are substantially improved.

Optimal Design of Radial Basis Function Network Using Time-Frequency Localization (시간-주파수 지역화를 이용한 방사 기준 함수 구조의 최적 설계)

  • Kim, Yong-Taek;Kim, Seong-Joo;Seo, Jae-Yong;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network(RBFN) which is more simple in the part of the structure and converges more faster than Neural Network. For this, we use the analysis method using time frequency localization and we can decide the initial structure of the RBFN suitable for the given problem. When we compose the hidden nodes with the radial basis functions whose localization are similar with the target function in the plane of the time and frequency, we can make a good decision of the initial structure having an ability of approximation.

  • PDF

Optimization of Fuzzy Systems by Means of GA and Weighting Factor (유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화)

  • Park, Byoung-Jun;Oh, Sung-Kwun;Ahn, Tae-Chon;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

Approximate Optimization of the Steel Wheel's Disc Hole (스틸휠 디스크 홀의 근사최적화)

  • Kim, Woo-Hyun;Cho, Jae-Seng;Yoo, Wan-Suk;Lim, O-Kaung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.570-573
    • /
    • 2003
  • Wheels for passenger car support the car weight with tires. and they transmit rolling and braking power into the ground. Whittliing away at wheel weight is more effective to boost fuel economy that lighting vehicle body structure. A shape of hole in disk is optimized for minimizing the weight of steel wheel. Pro/ENGINEER program is used for formulating the design model. and ANSYS package is selected for analyzing the design model. It has difficulties 10 interface these commercial software directly. For combining both programs. response surface methodology is applied to construct approximation functions for maximum stresses and maximum displacements are obtained by full factorial design of five levels. This steel wheel is modeled in 14-inch diameter of rim. and wide parameter of hole in disk is only selected as design variable for reducing the weight of steel wheel. PLBA(Pshenichny·Lim-Belegundu_arora) algorithm. which uses the second-order information in the direction finding problem and uses the active set strategy. is used for solving optimization problems.

  • PDF

WSGGM-Based Spectral Modeling for Radiation Properties of Combustion Products (회체가스중합모델에 기초한 연소가스의 파장별 복사 성질)

  • Kim, Ook Joong;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.628-636
    • /
    • 1999
  • This work describes the low-resolution spectral modeling of the water vapor, carbon dioxide and their mixtures by applying the weighted-sum-of-gray-gas-gases model (WSGGM) to each narrow band. Proper modeling scheme of gray gas absorption coefficients vs temperature relation is suggested. Comparison between the modeled emissivity calculated from this relation and the 'true' emissivity obtained from the high temperature statistical narrow band parameters is made for a few typical narrow bands. Low resolution spectral intensities from one-dimensional layers are also obtained and examined for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with several gray gases. The results are compared with the narrow band spectral intensities obtained by a narrow band model-based code with Curtis-Godson approximation. Good agreement is found between them. Data bases including optimized modeling parameters and total and low-resolution spectral weighting factors are developed for water vapor, carbon dioxide and their mixtures. This model and obtained data bases, available from the authors' Internet site, can be appropriately applied to any radiative transfer equation solver.

Thed Optimum Optical Geometry for Recording a Full Color Transmission type Holographic Screen of Larged Size

  • Kim, Jai-Soon;Bobrinev, V.I.;Son, Jung-Young;Choi, Yong-Jin;Shin, Sang-Hun
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.66-70
    • /
    • 2000
  • The main problem of image projection on a transmission type holographic screen is color sepa-ration. And it can be overcome by using a long narrow slit type diffuser as a source of the object beam when we record the screen. But that screen is not optimized and so needs changing several conditions. To set up the system many complicate things should be taken into accounted so it is very important to analyze the basic structure by simple concepts and calculations. We designed the system so that recording and projection axis coincide in one line and showed that the analysis of the system is very simple. We did it by a 1st order paraxial approximation calculation and it was good enough to describe the system. The photo-emulsion layer shrinks after processing of the hologram. It induced unsatisfactory color matching at the viewing zone. To overcome this effect, we pre-checked the shrinkage rate of an emulsion layer by experiments and modified the recording set up to compensate for the amount of shrinkage.

Head Slider Design Using Approximation Method For Load/Unload Applications (근사화 기법을 이용한 Load/Unload 용 헤드 슬라이더 최적설계)

  • Son, Seok-Ho;Yoon, Sang-Joon;Park, No-Cheol;Park, Young-Pil;Choi, Dong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.169-177
    • /
    • 2006
  • In this study, we present the optimization of a head slider using kriging method in order to reduce lift-off force during unloading process with satisfying reliable flying attitude in steady state. To perform an optimization process efficiently, a simplified lift-off force model, which is a function of air bearing suction force and flying attitudes, is created by kriging method. The EMDIOS, which is the process integration and design optimization software developed by iDOT, is used to automatically wrap the analysis with the optimization and efficiently implements the repetitive works between analyzer and optimizer. An optimization problem is formulated to reduce the lift-off force during unloading process while satisfying the flying attitude in reliable range over the entire recording band and reducing the probability of contact between slider and disk. The simulation result shows that the amplitude of lift-off force of optimized L/UL slider is reduced about 62%, compared with that of initial slider model. It is demonstrated by the dynamics L/UL simulation that the optimum slider incorporated with the suspension is not only smoothly loaded onto disk but also properly unloaded onto the ramp.

  • PDF

A Study on Reliability of Kriging Based Approximation Model and Aerodynamic Optimization for Turbofan Engine High Pressure Turbine Nozzle (터보팬 엔진 고압터빈 노즐에 대한 크리깅 모델 기반 근사모델의 신뢰도 및 공력성능 최적화 연구)

  • Lee, Sanga;Lee, Saeil;Kang, Young-Seok;Rhee, Dong-Ho;Lee, Dong-Ho;Kim, Kyu-Hong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.32-39
    • /
    • 2013
  • In the present study, three-dimensional aerodynamic optimization of high pressure turbine nozzle for turbofan engine was performed. For this, Kriging surrogate model was built and refined iteratively by supplying additional experimental points until the surrogate model and CFX result has effective difference on objective function. When the surrogate model satisfied this reliability condition and developed enough, optimum point was investigated. Commercial program PIAnO was used for optimization process and evolutionary algorithm was used for searching optimum point. As a result, difference between estimated value from Kriging surrogate model and CFD result converges within 0.01% and the optimized nozzle shape has 0.83% improved aerodynamic efficiency.

Multi-objective Optimization of Marine 3/2WAY Pneumatic Valve using Compromise Decision-Making Method (절충의사결정방법을 이용한 선박용 3/2WAY 공압밸브의 다목적 최적설계)

  • Kim, Jun-Oh;Baek, Seok-Heum;Kim, Tae-Woo;Kang, Sangmo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 2013
  • A study on the flow-structure characteristics of marine 3/2WAY pneumatic valve is essential for optimizing the performance of ship engines. It is important that the valve has desirable safety factor and reduced weight from safety and economic point of view. In this paper, flow-structure characteristics of pneumatic valve is obtained by being optimized based on the proper design criteria. The air with the pressure of 30 bar is the working fluid which is made to fill in the tack in short time. This time is defined as the filling time. On optimum design by considering the flow-structure characteristics, the approach is based on (1) the mathematical formulation of design decisions using the compromise decision-making method, and (2) the approximation technique of response surfaces. The methodology is demonstrated as the multi-objective optimization tool to improve the performance of marine 3/2WAY pneumatic valve.

Design of Broadband Planar Monopole Antenna (광대역 평면형 모노폴 안테나의 설계)

  • Lee Yun-Kyung;Yoon Hyun-Bo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.359-365
    • /
    • 2005
  • This paper designed a very low profle, light and broadband internal antenna for operating at PCS, IMT-2000 and Wibro bands. The proposed antenna can be reduced the size by using shorting-pin and a broadband characteristic is obtained by using slit. It is optimized by using the CST Microwave Studio commercial software based on the FIA(Finite Integration Algorithm) and PBA(Perfect Boundary Approximation) and then fabricated and measured. As a result of measurement, the bandwidth(VSWR<2.5) is $40.8\;\%$ at $1.934\;\cal{GHz}$ and the size of antenna is 3$30\;\cal{mm}\times10\;\cal{mm}\times0.2\;\cal{mm}$.