• Title/Summary/Keyword: Optimization.

Search Result 21,769, Processing Time 0.035 seconds

A Multi-Agent Approach to Context-Aware Optimization for Personalized Mobile Web Service (상황인지 기반 최적화가 가능한 개인화된 모바일 웹서비스 구축을 위한 다중에이전트 접근법에 관한 연구)

  • Kwon Oh-byung;Lee Ju-chul
    • Korean Management Science Review
    • /
    • v.21 no.3
    • /
    • pp.23-38
    • /
    • 2004
  • Recently the usage of mobile devices which enable the accessibility to Internet has been dramatically increased. Most of the mobile services, however, so far tend to be simple such as infotainment service. In order to fully taking advantage of wireless network and corresponding technology, personalized web service based on user's context could be needed. Meanwhile, optimization techniques have been vitally incorporated for optimizing the development and administration of electronic commerce. However, applying context-aware optimization mechanism to personalized mobile services is still very few. Hence, the purpose of this paper is to propose a methodology to incorporate optimization techniques into personalization services. Multi agent-based web service approach is considered to realize the methodology. To show the feasibility of the methodology proposed in this paper, a prototype system, CAMA-myOPt(Context-Aware Multi-Agent system for my Optimization), was implemented and adopted in mobile comparative shopping.

Portfolio Optimization with Groupwise Selection

  • Kim, Namhyoung;Sra, Suvrit
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.442-448
    • /
    • 2014
  • Portfolio optimization in the presence of estimation error can be stabilized by incorporating norm-constraints; this result was shown by DeMiguel et al. (A generalized approach to portfolio optimization: improving performance by constraining portfolio norms, Management Science, 5, 798-812, 2009), who reported empirical performance better than numerous competing approaches. We extend the idea of norm-constraints by introducing a powerful enhancement, grouped selection for portfolio optimization. Here, instead of merely penalizing norms of the assets being selected, we penalize groups, where within a group assets are treated alike, but across groups, the penalization may differ. The idea of groupwise selection is grounded in statistics, but to our knowledge, it is novel in the context of portfolio optimization. Novelty aside, the real benefits of groupwise selection are substantiated by experiments; our results show that groupwise asset selection leads to strategies with lower variance, higher Sharpe ratios, and even higher expected returns than the ordinary norm-constrained formulations.

Methods and Applications of Dual Response Surface Optimization : A Literature Review (쌍대반응표면최적화의 방법론 및 응용 : A Literature Review)

  • Lee, Dong-Hee;Jeong, In-Jun;Kim, Kwang-Jae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.342-350
    • /
    • 2013
  • Dual response surface optimization (DRSO), inspired by Taguchi's philosophy, attempts to optimize the process mean and variability by using response surface methodology. Researches on DRSO were extensively done in 1990's and have been matured recently. This paper reviews the existing DRSO methods from the decision making perspective. More specifically, this paper classifies the existing DRSO methods based on the optimization criterion and the timing of preference articulation. Also, some of case studies are reviewed. Extension to multiresponse optimization, triple response surface optimization, and application of data mining method are suggested as future research issues.

Colliding bodies optimization for size and topology optimization of truss structures

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.847-865
    • /
    • 2015
  • This paper presents the application of a recently developed meta-heuristic algorithm, called Colliding Bodies Optimization (CBO), for size and topology optimization of steel trusses. This method is based on the one-dimensional collisions between two bodies, where each agent solution is considered as a body. The performance of the proposed algorithm is investigated through four benchmark trusses for minimum weight with static and dynamic constraints. A comparison of the numerical results of the CBO with those of other available algorithms indicates that the proposed technique is capable of locating promising solutions using lesser or identical computational effort, with no need for internal parameter tuning.

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.283-293
    • /
    • 2013
  • This paper deals with the applicability of a new extended layerwise optimization method for thermal buckling load optimization of laminated composite plates. The design objective is the maximization of the critical thermal buckling of the laminated plates. The fibre orientations in the layers are considered as design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary conditions.

Optimum design of steel space structures using social spider optimization algorithm with spider jump technique

  • Aydogdu, Ibrahim;Efe, Perihan;Yetkin, Metin;Akin, Alper
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.259-272
    • /
    • 2017
  • In this study, recently developed swarm intelligence algorithm called Social Spider Optimization (SSO) approach and its enhanced version of SSO algorithm with spider jump techniques is used to develop a structural optimization technique for steel space structures. The improved version of SSO uses adaptive randomness probability in generating new solutions. The objective function of the design optimization problem is taken as the weight of a steel space structure. Constraints' functions are implemented from American Institute of Steel Construction-Load Resistance factor design (AISC-LRFD) and Ad Hoc Committee report and practice which cover strength, serviceability and geometric requirements. Three steel space structures are optimized using both standard SSO and SSO with spider jump (SSO_SJ) algorithms and the results are compared with those available in the literature in order to investigate the performance of the proposed algorithms.

Dynamic mix design optimization of high-performance concrete

  • Ziaei-Nia, Ali;Shariati, Mahdi;Salehabadi, Elnaz
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.67-75
    • /
    • 2018
  • High performance concrete (HPC) depends on various parameters such as the type of cement, aggregate and water reducer amount. Generally, the ready concrete company in various regions according to the requirements and costs, mix design of concrete as well as type of cement, aggregates, and, amount of other components will vary as a result of moment decisions or dynamic optimization, though the ideal conditions will be more applicable for the design of mix proportion of concrete. This study aimed to apply dynamic optimization for mix design of HPC; consequently, the objective function, decision variables, input and output variables and constraints are defined and also the proposed dynamic optimization model is validated by experimental results. Results indicate that dynamic optimization objective function can be defined in such a way that the compressive strength or performance of all constraints is simultaneously examined, so changing any of the variables at each step of the process input and output data changes the dynamic of the process which makes concrete mix design formidable.

Reasonable Optimum Design of Agricultural Reinforced Concrete Structure - Superstructures of Aqueduct - (농업용 철근콘크리트 구조물의 합리적인 최적설계 -수로교 상부구조물-)

  • Kim, Jong-Ok;Park, Chan-Gi;Cha, Sang-Sun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.19-26
    • /
    • 2010
  • This study was conducted to find out the reasonable optimum design method of agricultural reinforced concrete structures. Selected design variables are the dimension of concrete section, reinforced steel area, and objective function is formulated by cost function. To test the reliability, efficiency, possibility of application and reasonability of optimum design method, both continuous optimization method and mixed-discrete optimization method were applied to the design of reinforced concrete superstructure of aqueduct and application results were discussed. It is proved that mixed-discrete optimization method is more reliable, efficient and reasonable than continuous optimization method for the optimum design of reinforced concrete agricultural structures.

Computational Methods for On-Node Performance Optimization and Inter-Node Scalability of HPC Applications

  • Kim, Byoung-Do;Rosales-Fernandez, Carlos;Kim, Sungho
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.4
    • /
    • pp.294-309
    • /
    • 2012
  • In the age of multi-core and specialized accelerators in high performance computing (HPC) systems, it is critical to understand application characteristics and apply suitable optimizations in order to fully utilize advanced computing system. Often time, the process involves multiple stages of application performance diagnosis and a trial-and-error type of approach for optimization. In this study, a general guideline of performance optimization has been demonstrated with two class-representing applications. The main focuses are on node-level optimization and inter-node scalability improvement. While the number of optimization case studies is somewhat limited in this paper, the result provides insights into the systematic approach in HPC applications performance engineering.