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ABSTRACT 

Portfolio optimization in the presence of estimation error can be stabilized by incorporating norm-constraints; this 
result was shown by DeMiguel et al. (A generalized approach to portfolio optimization: improving performance by 
constraining portfolio norms, Management Science, 5, 798-812, 2009), who reported empirical performance better 
than numerous competing approaches. We extend the idea of norm-constraints by introducing a powerful enhance-
ment, grouped selection for portfolio optimization. Here, instead of merely penalizing norms of the assets being se-
lected, we penalize groups, where within a group assets are treated alike, but across groups, the penalization may dif-
fer. The idea of groupwise selection is grounded in statistics, but to our knowledge, it is novel in the context of portfo-
lio optimization. Novelty aside, the real benefits of groupwise selection are substantiated by experiments; our results 
show that groupwise asset selection leads to strategies with lower variance, higher Sharpe ratios, and even higher ex-
pected returns than the ordinary norm-constrained formulations. 
 
Keywords: Portfolio Optimization, Group-Norm, Asset Class 
 
* Corresponding Author, E-mail: nhkim@gachon.ac.kr 

 
 

1.  INTRODUCTION 

Modern portfolio theory originated with the seminal 
work of Markowitz (1951, 1991), who recognized that in 
an investment portfolio, one should choose assets not in-
dividually, but rather by considering how they are related 
to each other. The resulting ‘mean-variance’ portfolio sel-
ection, which essentially aims to minimize risk (defined 
in terms of minimizing variance of returns), depends stro-
ngly on good estimates of the means and covariances of 
the asset returns. Typically, these values are estimated by 
using sample means and covariances, but as strongly st-
ressed by DeMiguel et al. (2009), estimation error in 
these quantities leads to poor out-of-sample performance 
(see also references therein). To counter this poor per-
formance, DeMiguel et al. (2009) introduced the idea 
solving the traditional minimum-variance problem subject 
to a norm constraint on the portfolio-weight vector. This 
constraint was then shown to lead to portfolio strategies 

that often have higher Sharpe ratios than several compet-
ing strategies (DeMiguel et al., 2009). 

Intuitively, one could attribute the better perform-
ance of their norm-constrained portfolios to selection. 
That is, the norm constraint restricts the choice of assets 
to which the investment should be allocated. However, 
which particular assets are chosen depends somewhat 
arbitrarily on the constraint parameters. So, one may natu-
rally ask whether a more careful asset allocation can lead 
to even better portfolios? 

This question has been addressed at a higher level by 
considering the notion of asset classes (Maginn et al., 2007, 
Chapter 5). Therein, the authors suggest that one should 
divide assets into classes which satisfy the following pro-
perties: first, assets within an asset class are homogeneous; 
second, asset classes are mutually exclusive; third, asset 
classes lead to diversification; forth, the different asset 
classes should cover a significant fraction of the inves-
tor’s wealth; and lastly, each asset class should have the 
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capacity to absorb a significant fraction of the investor’s 
wealth. 

These properties of asset classes and the good em-
pirical results of the norm-based model motivate us to ask: 

 
Can we combine asset classes and norms to obtain more 
effective portfolio optimization strategies? 

 
In this paper we provide one answer to this question 

by presenting several new models based on group norms, 
which, instead of merely constraining weights of individ-
ual assets, constrain the weight associated to a group of 
assets. Experiments reveal that such groupwise constra-
ints are beneficial— they lead to better portfolio strategies 
(as indicated by higher Sharpe ratios, lower variance, etc.) 
than competing approaches. Groupwise selection is a sim-
ple, yet powerful generalization to the idea of norm con-
strained portfolios, especially because it permits use of 
asset classes, and it opens up the possibility to incorporate 
expert knowledge for deciding what grouping to use. 

Moreover, our mathematical formulation does not 
exclude overlapping groups; so in case expert knowledge 
suggests overlapping groups, the model can accommo-
date this knowledge. Although, as motivated in Maggin et 
al. (2007, Chapter 5), non-overlapping asset classes should 
be preferred, whereby we focus our attention on non-
overlapping groups; we will also briefly discuss examples 
with overlapping groups. 

The remaining part of this paper is organized as fol-
lows. In Section 2, we review the previous portfolio op-
timization strategies. In Section 3, we propose our portfo-
lio optimization strategies. In Section 4, the numerical re-
sults are presented and we conclude the paper in Section 5. 

2.  PORTFOLIO OPTIMIZATION 

The goal of portfolio optimization is to maximize its 
returns with less risk. Single period portfolio optimization 
using the mean and variance was first suggested by 
Markowitz (1952). 

Markowitz’ mean-variance optimization model is a 
widely used tool for portfolio optimization. It can be for-
mulated in different ways. The typical problem is as fol-
low: 

 
1 ˆmin ,
2

T
w w wΣ    (1)  

subject to ˆ R,T wμ ≥      (2)  
Aw = b,      (3) 
Cw ≥ d,      (4) 

 
in which w ∈ N

 is the vector of portfolio weights, Σ̂  
∈ N N×

 is the estimated covariance matrix, 
T ˆw Σ  w is 

the variance of the portfolio return, μ̂  is the estimated 
asset returns. 

The other one is a risk-adjusted formulation. 

ˆmax ,
2

T T
w w w wλμ − Σ   (5) 

subject to Aw = b     (6) 
rtS Cw ≥ d,     (7) 

 
where λ is a risk-aversion constant. Recently, some re-
searchers focus on minimum-variance portfolio, because 
of the estimation error associated with the sample mean. 
Like previous authors, we too focus on minimum-vari-
ance portfolios, noting however that our framework easily 
applies to other formulations, such as mean-variance. 

In the absence of shortsale constraints, the minimum-
variance portfolio is the solution to the following problem: 

 
1 ˆmin ,
2

T
w w wΣ    (8) 

subject to 
Tw e = 1,     (9) 

 
in which e ∈ N

 is the vector of ones. 
DeMiguel et al. (2009) suggested the additional con-

straint that the norm of the portfolio-weight vector smaller 
than a particular value to solve the traditional minimum-
variance problem. The p-norm-constraint portfolio is the 
solution to the problem (8) and (9) subject to the addi-
tional constraint on the pl -norm of the portfolio-weight 
vector. 

 
||w||p ≤ δ,   (10) 

 
in which δ is a threshold and it can be calibrated using 
cross-validation. They showed that the framework nests 
the shrinkage approaches (Jagannathan and Ma, 2003; 
Ledoit and Wolf, 2003, 2004) and 1/N portfolio. The norm- 
constraint portfolio often showed better performance than 
other portfolios in the literature in terms of out-of-sample 
Sharpe ratio, although it was accompanied by higher tur-
nover. 

We propose more general framework than the norm 
constrained framework of DeMiguel et al. (2009); all of 
their formulations can be obtained as special cases of our 
framework. 

3.  PROPOSED APPROACH: CONSTRAIN-
ING GROUP NORM 

As mentioned above, Markovitz’ mean-variance op-
timization problem can be formulated with some const-
raints like shortsale constraint (Jagannathan and Ma, 2003), 
norm constraint (DeMiguel et al., 2009). One can also 
reduce sector risk by adding the constraint 

 

in sec tor
,i k

i k
w m≤∑  

 
where mk is the maximum that can be invested in sector k. 
However, the more constraints make the objective value 
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degenerates (Cornuejols and Tutuncu, 2007). In this paper, 
we suggest new portfolio optimization strategies using 
group-norms. 

A mixed-norm aka group-norm is usually defined 
over a set of parameter vectors, where the individual pa-
rameters form ‘groups’ and each group’s penalty or con-
tribution may be measured using a different pl -norm. This 
notion is described formally in Definition 1–4 below. 

3.1 Group-Norms 

DEFINITION 1 (Mixed-norm: Vectors). 
Let w ∈ d

 be partitioned into the set {wt: wt ∈ 
dt , 1 ≤ t ≤ n} of (column) vectors. We define the mixed 
,p ql -norm (read as p norm of q norms) (1 ≤ p, q ≤ ∞) for 

w as 
 

1 2, ; ; ; .np q q q q p
w w w w⎡ ⎤= ⎢ ⎥⎣ ⎦

 (11) 

 
That is, we compute the pl -norm of the vector of 

length n formed by computing pl -norms of the individ-
ual vectors wt (1 ≤ t ≤ n) (Note: The definition (11) can be 
further generalized, e.g., if we take the qtl -norm n qt

w  
of wt ). 

This generalization comes up for example, while stu-
dying Lp-nested symmetric distributions (Bethge et al., 
2009). 

 
DEFINITION 2 (Mixed-norm: Matrices). 

For a matrix W ∈ d n ,×
 we define the mixed-norm 

to be the pl -norm of the ql -norms of the rows; i.e., 
 

1 2, ; ; ; d
p q q q q p

w w w⎡ ⎤
= ⎢ ⎥

⎣ ⎦
W  (12) 

 
We define the mixed-norm over rows rather than 

columns, because usually in multi-task setups one wishes 
to enforce sparsity across the same feature for multiple 
tasks, whereby, the same ‘row’ across all tasks (columns 
of W) is penalized. For example, the 1,l ∞  norm of W ∈ 

d n×
 is 

11,
d i
i w=∞ ∞

=∑W   (13) 

 
DEFINITION 3 (Group-norm). 

Let w be as in Definition 1. We define the group-
norm as (1 ≤ p ≤ ∞) 

 

1 2( ) 1 2
; ; ; ,nGr p K K Kn p

w w w w⎡ ⎤= ⎢ ⎥⎣ ⎦
    (14) 

 
i.e., the pl -norm of a vector formed by taking Hilbert-
Schmidt norms parameterized by the positive-definite 

matrices 
dttK S++∈ (1 ≤ t ≤ n). For example, if t dtK I∈  and 

p = 1, then (14) becomes 
 

1(1) 1,2 2
.n

ttGrw w w== = ∑    (15) 

 
DEFINITION 4 (Mixed quasi-norms). 

In Definitions 1 or 2 we permit any row or subvector 
(as the case may be) to have norm measured by the 0l -
quasi-norm, we obtain a mixed quasi-norm. The most 
important instances are: 0,0 0, ,0 0,, , ,p p pW W W W  

,0or ,pW  where 1 ≤ p ≤ ∞. 

In this paper, we propose new portfolio optimization 
strategies using group-norms. The formulation is as fol-
low. 

 
1 ˆmin ,
2

T
w w wΣ    (16) 

subject to e 1,Tw =     (17) 

, ,p qw δ≤     (18) 

 
where ,p qw  is a group-norm. To apply group-norms, we 

should partition the stocks into several groups. We use ran-
dom grouping and k-means clustering algorithm. To im-
plement k-means clustering algorithm, the sample return 
and variance of assets are used as attributes. We also allow 
overlapping groups using soft k-means algorithm. Each 
group is assumed to represent an asset class. 

3.2 Interpretation of the Group-Norms 

Additional group-norm constraint can be interpreted 
in various ways. First is introduction of groupwise selec-
tion for portfolio optimization. This idea actually goes 
much further than imagined. Second is explanation of the 
modeling power of the groupwise selection. For example, 
in the Black-Litterman model, one of the first steps that is 
suggested is to divide the assets into various ‘asset clas-
ses’, and Maginn et al. (2007) suggest that these asset 
classes should satisfy: 
• Assets within a class should be homogeneous (same 

ql -norm used for all elements within a group); 
• Assets should be mutually exclusive (non-overlapping 

variables for groups); 
• Asset classes should be diversifying (e.g., use of 1,l ∞ -

norm promotes diversity, while being homogeneous 
within a group respectively asset class); 

• Asset class should have capacity to absorb significant 
fraction of the investor’s wealth (again the 1,l ∞ -norm 
makes sense, because the ∞ portion distributes wealth 
across the assets within the class; since 1l -favors spar-
sity, one could use other norms, such as 2,l ∞  to absorb 
greater fraction of wealth); 

• Asset classes taken together should make up significant 
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portion of investor’s wealth (if we cover all the possi-
ble assets this requirement gets addressed automatically; 
by using 1l -norm, we promote sparsity, so that overly 
diffuse investments are not made, but rather a few 
‘groups’ or ‘asset classes’ get selected, and in them the 
investments are made). 

 
Our model of groupwise selection, however, goes 

beyond these prescriptions of Miginn et al. (2007), and 
permits arbitrary overlapping groups. That is, the same 
asset may be part of more than one asset class; even 
though mathematically we permit this, we do not have a 
natural interpretation for such grouping, except if one 
interprets the ‘asset classes’ as ‘hedging’ the groups them-
selves—so that an erroneous asset classification does not 
have too severe a negative impact on the investment. Last 
interpretation is mathematical formulation, as well as 
algorithms for efficiently solving the associated optimiza-
tion problems. 

4.  EMPIRICAL RESULTS 

For the application, we give an example of the re-
sults. We used weekly historical data to estimate the means 
and covariances of asset returns. The data was taken from 
Yahoo! Finance (http://finance.yahoo.com). The portfolio 
is composed of S&P 500 components shares. The S&P 
500 is widely regarded as the best representations of the 
US stock market and a leading indicator of business cy-
cles. It consists of the common stock listed on the NYSE 
or NASDAQ. The total number of shares is 500 but we 
use 466 shares. The sample covered the period from Au-
gust 16, 2004 through August 2, 2010. We estimate sam-
ple mean and variance every Monday. An overview of the 
data is given in Table 1. 

To evaluate the performance of the proposed method 
with N available assets, we compute the out-of-sample 
variance, Sharpe ratio, and turnover as following: 

 

( )
22 1

1
1ˆ ˆ ,

1
TTi i i

t tt w r
T τσ μ

τ
−

+=
⎛ ⎞= −⎜ ⎟− − ⎝ ⎠

∑     (19) 

With 1
1

1ˆ ,
TTi i

t tt w r
T τμ

τ
−

+==
− ∑   (20) 

ˆ
,

ˆ

ii
iSR μ

σ
=    (21) 

Turnover = ( )1
, 1 ,1

1 ,
1

T N i i
j t j tt j w w

T ττ
−

+ += = −
− − ∑ ∑  (22) 

 
Table 1. Data set description 

Data set S&P 500 components 
No. of shares 466 
Time period 16/08/2004 to 02/08/2010 
Source Yahoo! Finance 
 

Table 2. List of benchmark portfolios 

Model Abbreviation
Minimum-variance portfolio with shortsales 
unconstrained 

1-norm-constrained minimum-variance port-
folio 

2-norm-constrained minimum-variance port-
folio  

Mean-variance portfolio with risk aversion p
arameter 2 

1-norm-constrained mean-variance portfolio 
2-norm-constrained mean-variance portfolio 

MINU 
 

NC1V 
 

NC2V 
 

MEAN 
 

NC1M 
NC2M 

 
where τ is the length of the estimation window, T is the 
total number of returns in the dataset, 

i
tw  is portfolio-

weight vectors for each strategy i, and rt denotes the asset 
returns. In the definition of turnover, ,

i
j tw  is the portfolio 

weight in asset j at time t for strategy i, ,
i
j tw +  is the port-

folio weight before rebalancing. 
We use the rolling-window procedure for the com-

parison. For our empirical test, we use an estimation win-
dow of τ = 120, which corresponds to thirty months for 
weekly data. We compare empirically the out-of-sample 
performance of group-norms portfolios to other strategies. 
The portfolios we evaluate are listed in Table 2. 

MINU, NC1V, and NC2V are models for minimum-
variance portfolio. MEAN, NC1M, and NC2M are mod-
els for mean-variance portfolio. 

To develop the proposed portfolio in this paper, we 
should select the number of groups, the value of threshold 
δ and the orders of group-norm, p and q. We make two, 
five, and ten groups and use group norm with p = 1, q = 2, 
3, ∞. The threshold was calibrated with cross-validation 
(Efron and Gong, 1983; Campbell et al., 1997, Section 
12.3.2). 

Tables 3 and 4 show the out-of-sample performance 
of each strategies. Table 3 shows performance of mini-
mum-variance portfolios when the objective function is 

1 ˆmin .
2

T
w w wΣ  The results of mean-variance portfolio are 

presented in Table 4. The estimation error associated with 
the sample mean is relatively large so extensive empirical 
evidence shows that the minimum-variance portfolio of-
ten performs better than mean-variance portfolio. 

This table reports the weekly out-of-sample mean, 
Sharpe ratio, variance and turnover for minimum-vari-

ance portfolio, 
1 ˆmin .
2

T
w w wΣ  

This table reports the weekly out-of-sample mean, 
Sharpe ratio, variance and turnover for mean-variance 

portfolio, ˆˆmax .
2

T T
w w w wλμ − Σ  

From Table 3 and 4 we see that the portfolios with 
non-overlap groups are usually better than the portfolio 
with overlap groups. Comparing the benchmark portfo-
lios listed in Table 2, the portfolios developed in this pa-
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per show reasonable results in out-of-sample performance. 
If we select optimal number of groups, p and q, the per-
formance of the proposed method will be better than the 
norm-constraint portfolios.  

5.  CONCLUSION 

We provided a general unifying framework for port-
folio optimization. This paper contributes to the literature 
on portfolio optimization strategies. First, our group-norm 
constraint model is a general form including other con-

straint portfolio strategies, such as shortsale constraint mo-
del (Lintner, 1965; Jagannathan and Ma, 2003), norm-
constraint model (DeMiguel et al., 2009), and simple 1/N 
model. Second, the portfolios developed in this paper of-
ten show better mean return and Sharpe ratio than the 
existing portfolios, although the higher Sharpe ratio is 
accompanied by higher turnover. Lastly, the proposed mo-
del permits use of asset classes naturally. The asset classes 
lead to diversification of portfolio. This property of asset 
classes and the good empirical results of the norm-cons-
traint model lead the better performance. 

For further research, the strategies of grouping assets 

Table 3. Portfolio performance comparison 

Clustering methods # of groups p q δ mean  Sharpe ratios Variances Turnovers

2 
1 
1 
1 

2 
3 
∞ 

0.7
0.7
0.1

 0.00011 
 0.00018 
 0.00026 

 0.01004 
 0.01672 
 0.02291 

0.00012 
0.00012 
0.00013 

0.68256 
0.70428 
0.75611 

 
5 

1 
1 
1 

2 
3 
∞ 

0.7
0.7
0.1

-0.00021 
 0.00029 
-0.00027 

-0.02101 
 0.02569 
-0.02482 

0.00010 
0.00012 
0.00012 

0.51400 
0.73130 
1.13338 

random 

 
10  

1 
1 
1 

2 
3 
∞ 

1 
0.7
0.1

-0.00007 
 0.00053 
 0.00011 

-0.00706 
 0.04861 
 0.01077 

0.00011 
0.00012 
0.00010 

0.56017 
0.71377 
0.37288 

 
2 

1 
1 
1 

2 
3 
∞ 

0.7
0.7
0.1

 0.00028 
 0.00018 
 0.00009 

 0.02628 
 0.01581 
 0.00790 

0.00011 
0.00012 
0.00013 

0.66576 
0.74035 
0.76474 

5 
1 
1 
1 

2 
3 
∞ 

0.7
0.7
0.1

 0.00045 
 0.00037 
 0.00095 

 0.04081 
 0.03325 
 0.07216 

0.00012 
0.00012 
0.00017 

0.65842 
0.72649 
1.01678 

non- 
overlap 

k-means 

10 
1 
1 
1 

2 
3 
∞ 

1 
0.7
0.1

 0.00038 
 0.00047 
 0.00074 

 0.03457 
 0.04326 
 0.06147 

0.00012 
0.00012 
0.00015 

0.68073 
0.76994 
0.80687 

2 
1 
2 
1 

2 
3 
∞ 

2 
2 

0.3

 0.00001 
-0.00009 
 0.00019 

 0.00129 
-0.00828 
 0.01705 

0.00012 
0.00012 
0.00012 

0.68844 
0.70111 
0.69754 

5 
1 
5 
1 

2 
3 
∞ 

2 
2 

0.3

 0.00007 
-0.00043 
 0.00002 

 0.00664 
-0.03672 
 0.00213 

0.00012 
0.00014 
0.00013 

0.70323 
0.86338 
0.74204 

random 

10 
1 
1 
1 

2 
3 
∞ 

2 
2 

0.5

 0.00030 
 0.00024 
 0.00036 

 0.02812 
 0.02266 
 0.03216 

0.00011 
0.00012 
0.00013 

0.69071 
0.87674 
0.74800 

2 
1 
1 
1 

2 
3 
∞ 

3 
3 

0.5

 0.00008 
-0.00007 
 0.00012 

 0.00701 
-0.00650 
 0.01106 

0.00012 
0.00013 
0.00012 

0.66751 
0.71678 
0.72461 

5 
1 
1 
1 

2 
3 
∞ 

3 
3 

0.5

 0.00020 
-0.00020 
 0.00013 

 0.01806 
-0.01796 
 0.01132 

0.00012 
0.00012 
0.00013 

0.69330 
0.72799 
0.76152 

overlap 

soft k-means 

10 
1 
1 
1 

2 
3 
∞ 

3 
3 

0.5

-0.00018 
 0.00005 
 0.00024 

-0.01655 
 0.00426 
 0.02291 

0.00012 
0.00014 
0.00011 

0.73686 
0.83280 
0.78040 

Benchmark  δ mean  Sharpe ratios Variances Turnovers
MINU 
NC1V  
NC2V  

 
1.4 
0.2 

 0.00013 
-0.00001 
-0.00001 

 0.01230  
-0.08752 
-0.07766 

0.00012 
0.00013 
0.00011 

0.68435 
0.26938 
0.42349 
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can be analyzed. In this research, we use simple random 
grouping and k-means clustering algorithm using sample 
mean and variance without considering expert’s knowl-
edge and industrial properties of assets. Especially, as 
mentioned earlier, it is more difficult to estimate means so 
the skill to forecast expected returns is needed for better 
performance. The optimal number of groups should also 
be studied. 
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2 
1 
1 
1 

2 
3 
∞ 
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0.7
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 0.05703 
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random 
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1 
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3 
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0.00040 
0.00073 
0.00028 
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2 
1 
1 
1 

2 
3 
∞ 

0.7
0.7
0.1

 0.00100 
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 0.03923 
-0.04138 
-0.10888 

0.00065 
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0.77865 
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5 
1 
1 
1 

2 
3 
∞ 

0.7
0.7
0.1
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 0.02847 
-0.07374 
-0.16659 

0.00063 
0.00279 
0.00203 

0.61404 
2.23334 
3.55052 

Non 
overlap 

k-means 

10 
1 
1 
1 

2 
3 
∞

1 
0.7
0.1

 0.00198 
-0.00187 
0.00178 

 0.07559 
-0.03242 
0.03760

0.00068 
0.00332 
0.00224 

0.60682 
1.65515 
1.17426

5 
1 
1 
1 

2 
3 
∞ 

2 
2 

0.3

 0.00206 
-0.01067 
-0.00952 

 0.03551 
-0.09154 
-0.08616 

0.00336 
0.01358 
0.01220 

2.35288 
5.90414 
5.45354 

5 
1 
1 
1 

2 
3 
∞ 

2 
2 

0.3

 0.00255 
-0.00101 
-0.00481 

 0.06483 
-0.01280 
-0.09909 

0.00155 
0.00621 
0.00236 

1.70558 
5.84109 
3.39847 

random 

10 
1 
1 
1 

2 
3 
∞ 

2 
2 

0.5

 0.00102 
 0.00078 
-0.00602 

 0.02777 
 0.01489 
-0.13745 

0.00135 
0.00274 
0.00192 

1.36261 
5.26236 
4.71586 

5 
1 
1 
1 

2 
3 
∞ 

3 
3 

0.5

-0.00229 
-0.02731 
-0.02303 

-0.02816 
-0.16446 
-0.13359 

0.00661 
0.02757 
0.02971 

3.54828 
9.20783 
9.58459 

5 
1 
1 
1 

2 
3 
∞ 

3 
3 

0.5

-0.00244 
-0.01796 
-0.02812 

-0.03049 
-0.12983 
-0.18545 

0.00638 
0.01913 
0.02299 

3.13377 
7.29076 
16.71380 

overlap 

soft k-means 

10 
1 
1 
1 

2 
3 
∞ 

3 
3 

0.5

 0.00997 
-0.00096 
-0.01147 

 0.17396 
-0.01195 
-0.17059 

0.00328 
0.00646 
0.00452 

1.32832 
3.40558 
2.97873 

Benchmark  δ mean  Sharpe ratios Variances Turnovers 
MEAN 
NC1M 
NC2M 

 
1.4
0.2

-0.27141 
-0.00205 
90.00080 

-0.18416 
-0.08987 
 0.03357 

2.17215 
0.00052 
0.00057 

109.23311 
0.29046 
0.64312 
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