• 제목/요약/키워드: Optimization program

검색결과 1,059건 처리시간 0.03초

Topology Optimization of the Decking Unit in the Aluminum Bass Boat and Strength Verification using the FEM-program

  • Seo, Kwang-Cheol;Gwak, Jin;Park, Joo-Shin
    • 해양환경안전학회지
    • /
    • 제24권3호
    • /
    • pp.367-372
    • /
    • 2018
  • The objective of this paper is to optimize the cross-section of aluminum decking units used in the bass boats under operating conditions, and to verify the optimized model from the results via by ANSYS software. Aluminum decking unit is needed to endure specific loading while leisure activity and sailing. For a stiffer and more cost-neutral aluminum decking unit, optimization is often considered in the naval and marine industries. This optimization of the aluminum decking unit is performed using the ANSYS program, which is based on the topology optimization method. The generation of finite element models and stress evaluations are conducted using the ANSYS Multiphysics module, which is based on the Finite Element Method (FEM). Through such a series of studies, it was possible to determine the most suitable case for satisfying the structural strength found among the phase-optimized aluminum deck units in bass boats. From these optimization results, CASE 1 shows the best solution in comparison with the other cases for this optimization. By linking the topology optimization with the structural strength analysis, the optimal solution can be found in a relatively short amount of time, and these procedures are expected to be applicable to many fields of engineering.

Development of an Optimization Program for a 2G HTS Conductor Design Process

  • Kim, K.L.;Hwang, S.J.;Hahn, S.;Moon, S.H.;Lee, H.G.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권4호
    • /
    • pp.8-12
    • /
    • 2010
  • The properties of the conductor.mechanical, thermal, and electrical-are the key information in the design and optimization of superconducting coils. Particularly, in devices using second generation (2G) high temperature superconductors (HTS), whose base materials (for example, the substrate or stabilizer) and dimensions are adjustable, a design process for conductor optimization is one of the most important factors to enhance the electrical and thermal performance of the superconducting system while reducing the cost of the conductor. Recently, we developed a numerical program that can be used for 2G HTS conductor optimization. Focusing on the five major properties, viz. the electrical resistivity, heat capacity, thermal conductivity, Z-value, and enthalpy, the program includes an electronic database of the major base materials and calculates the equivalent properties of the 2G HTS conductors using the dimensions of the base materials as the input values. In this study, the developed program is introduced and its validity is verified by comparing the experimental and simulated results obtained with several 2G HTS conductors.

Hopfield neuron based nonlinear constrained programming to fuzzy structural engineering optimization

  • Shih, C.J.;Chang, C.C.
    • Structural Engineering and Mechanics
    • /
    • 제7권5호
    • /
    • pp.485-502
    • /
    • 1999
  • Using the continuous Hopfield network model as the basis to solve the general crisp and fuzzy constrained optimization problem is presented and examined. The model lies in its transformation to a parallel algorithm which distributes the work of numerical optimization to several simultaneously computing processors. The method is applied to different structural engineering design problems that demonstrate this usefulness, satisfaction or potential. The computing algorithm has been given and discussed for a designer who can program it without difficulty.

구조 최적화를 위한 비정형 구조시스템의 인터페이스 기법 (Interface Technique for Optimization of Free-form Structural System)

  • 나유미;이재홍;강주원
    • 한국공간구조학회논문집
    • /
    • 제12권1호
    • /
    • pp.43-50
    • /
    • 2012
  • 최근 컴퓨터 기술의 발달로 인해 복잡한 형태를 가지는 기념비적인 건축물이 설계, 시공됨에 따라 비정형건축에 관한 사회적인 관심이 해외뿐만 아니라 국내에서도 증가하고 있다. 하지만 비정형 구조시스템의 구현하기 위한 기술 및 연구에 대한 사례가 부족하여 많은 어려움이 있다. 이러한 문제를 해결하기 위해 본 연구에서는 3D모델링 프로그램과 최적설계를 수행하는 프로그램간의 인터페이스 모듈에 대한 연구를 수행하였다. 3D 모델링 프로그램에서 자동 메쉬를 생성하고, 모델링에 대한 정보를 바로 추출하여 최적화를 수행하였다. 결과적으로 개발된 인터페이스 모듈의 검증을 위해 예제 모델을 선정하여 형상최적화을 수행하였다.

최적화 기법이 적용된 전력계통 안정화 시스템 개발 (Development of power system stabilization program using optimization method)

  • 안창한;백영식
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.370-374
    • /
    • 2015
  • Various protective equiptments are used for the power system control and protection. Numerous facilities are monitored at the same time in real time and introduction of optimization method and analysis of the method are required for generation control and facility management considering the demand fluctuations. However, the existing system analysis programs are difficult to link with the other sw and there are some problems with user convenience. To solve these problems the present conditions of the system are figured out in real time and the equipment insert method was estimated by optimization method, and the system that showed the system analysis program is developed. PSS/E has been used as system anlysis program for stabilizing system development which applied the optimization. method and Python language is applied in order to link the input and output values with the DB automatically. Lastly, DLL of matlab has been made included in C++ for solving the objective function using opmization method.By linking this to DB, power flow was calculated in PSS/E and the result was represented by Intouch screen.

장애함수법에 의한 신뢰성기반 최적설계 (Barrier Function Method in Reliability Based Design Optimization)

  • 이태희;최운용;김홍선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

고속 볼 엔드밀 가공에서 절삭속도 최적화 (Optimization cutting speed in high speed ball end milling)

  • 김경균;강명창;정융호;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.895-898
    • /
    • 2001
  • This paper presents an optimization cutting speed(OCS) program developed to improve the machining precision and tool life in high speed machining using ball end milling. This program optimized the cutting speed that is changing at any time in free surface machining of an automobile part like a connecting load die. The technique of optimization cutting speed makes the CAD/CAM-generated NC code go through a reverse post process, conducts cutting simulation, and obtain the effective tool diameter of the ball end milling. Then it changes the spindle revolution to within the range of critical cutting speed fit for the material of the workpieces depending upon the effective tool diameter. In this study, the machining precision and tool life were compared for the two connecting load dies processed using the general cutting method and the proposed optimization cutting speed technique, respectively.

  • PDF

Computational finite element model updating tool for modal testing of structures

  • Sahin, Abdurrahman;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.229-248
    • /
    • 2014
  • In this paper, the development of a new optimization software for finite element model updating of engineering structures titled as FemUP is described. The program is used for computational FEM model updating of structures depending on modal testing results. This paper deals with the FE model updating procedure carried out in FemUP. The theoretical exposition on FE model updating and optimization techniques is presented. The related issues including the objective function, constraint function, different residuals and possible parameters for FE model updating are investigated. The issues of updating process adopted in FemUP are discussed. The ideas of optimization to be used in FE model updating application are explained. The algorithm of Sequential Quadratic Programming (SQP) is explored which will be used to solve the optimization problem. The possibilities of the program are demonstrated with a three dimensional steel frame model. As a result of this study, it can be said that SQP algorithm is very effective in model updating procedure.

최적화 기법을 이용한 이산화탄소 소화설비의 설계프로그램 개발에 관한 연구 (A Study on the Design Program Development of the Carbon Dioxide Fire Extinguishing System Using an Optimization)

  • 이동명
    • 한국화재소방학회논문지
    • /
    • 제28권3호
    • /
    • pp.1-9
    • /
    • 2014
  • 본 연구에서는 이산화탄소 소화설비의 설계이론, 소방방재청 고시 제2012-11호, KS B 6261과 최적화 기법 중 최대 경사법을 바탕으로 이산화탄소 소화설비의 설계인자를 최적화할 수 있는 설계프로그램을 개발하였다. 설계프로그램은 정립된 로직 및 알고리즘을 바탕으로 C++ 컴파일러를 이용하여 개발하였고 윈도우 운영체계에서 운영되도록 하였다. 이산화탄소 소화설비 설계인자의 최적화는 제한조건으로 구속되어있는 약제유동율, 방출시간 및 설계변수(배관내경 등)를 최소화하였다. 시험장치에 의해 설계프로그램의 성능을 검증하였고, 소방분야에 최적설계의 기틀을 마련하였다. 또한 최적설계인자를 바탕으로 이산화탄소 소화설비를 시공함으로서 소화설비의 효율성을 높이고 화재진압을 극대화할 것으로 본다.

고능률 가공을 위한 절삭 동력 기반의 이송 속도 최적화 (Cutting Power Based Feedrate Optimization for High-Efficient Machining)

  • 조재완;김석일
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.333-340
    • /
    • 2005
  • Feedrate is one of the factors that have the significant effects on the productivity, qualify and tool life in the cutting mechanism as well as cutting velocity, depth of cut and width of cut. In this study, in order to realize the high-efficient machining, a new feedrate optimization method is proposed based on the concept that the optimum feedrate can be derived from the allowable cutting power since the cutting power can be predicted from the cutting parameters as feedrate, depth of cut, width of cut, chip thickness, engagement angle, rake angle, specific cutting force and so on. Tool paths are extracted from the original NC program via the reverse post-processing process and converted into the infinitesimal tool paths via the interpolation process. And the novel NC program is reconstructed by optimizing the feedrate of infinitesimal tool paths. Especially, the fast feedrate optimization is realized by using the Boolean operation based on the Goldfeather CSG rendering algorithm, and the simulation results reveal the availability of the proposed optimization method dramatically reducing the cutting time and/or the optimization time. As a result, the proposed optimization method will go far toward improving the productivity and qualify.