Data anomalies seriously threaten the reliability of the bridge structural health monitoring system and may trigger system misjudgment. To overcome the above problem, an efficient and accurate data anomaly detection method is desiderated. Traditional anomaly detection methods extract various abnormal features as the key indicators to identify data anomalies. Then set thresholds artificially for various features to identify specific anomalies, which is the artificial experience method. However, limited by the poor generalization ability among sensors, this method often leads to high labor costs. Another approach to anomaly detection is a data-driven approach based on machine learning methods. Among these, the bidirectional long-short memory neural network (BiLSTM), as an effective classification method, excels at finding complex relationships in multivariate time series data. However, training unprocessed original signals often leads to low computation efficiency and poor convergence, for lacking appropriate feature selection. Therefore, this article combines the advantages of the two methods by proposing a deep learning method with manual experience statistical features fed into it. Experimental comparative studies illustrate that the BiLSTM model with appropriate feature input has an accuracy rate of over 87-94%. Meanwhile, this paper provides basic principles of data cleaning and discusses the typical features of various anomalies. Furthermore, the optimization strategies of the feature space selection based on artificial experience are also highlighted.
Journal of the Korea Society of Computer and Information
/
v.27
no.12
/
pp.277-284
/
2022
In this paper, we proposes a method of optimizing the processing order of skids to minimize the span time in a conveyor environment of the shipbuilding subassembly process. The subassembly process consists of a series of fixed tasks where the required work time is varied according to the skid type. The loading order of skids on a conveyor which determines the span time should be properly optimized and the problem size exponentially increases with the number of skids. In this regard, we propose a novel method called UniDev by defining a measure of the mean-absolute-deviation about the time difference among simultaneously processed tasks and iteratively improving it. Through simulations with various numbers of skids and processes, it was observed that our proposed method can efficiently reduce the overall work time compared with the multi-start and the 2-OPT methods.
Park, Jin Su;Jeong, Ji Seong;Yang, Chul Seung;Lee, Jeong Gi
The Journal of the Convergence on Culture Technology
/
v.8
no.6
/
pp.905-910
/
2022
Drowsy driving requires a lot of social attention because it increases the incidence of traffic accidents and leads to fatal accidents. The number of accidents caused by drowsy driving is increasing every year. Therefore, in order to solve this problem all over the world, research for measuring various biosignals is being conducted. Among them, this paper focuses on non-contact biosignal analysis. Various noises such as engine, tire, and body vibrations are generated in a running vehicle. To measure the driver's heart rate and respiration rate in a driving vehicle with a piezoelectric sensor, a sensor plate that can cushion vehicle vibrations was designed and noise generated from the vehicle was reduced. In addition, we developed a system for classifying whether the driver is sleeping or not by extracting the model using the CNN-LSTM ensemble learning technique based on the signal of the piezoelectric sensor. In order to learn the sleep state, the subject's biosignals were acquired every 30 seconds, and 797 pieces of data were comparatively analyzed.
International Journal of Naval Architecture and Ocean Engineering
/
v.13
no.1
/
pp.641-649
/
2021
Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.21
no.5
/
pp.98-104
/
2022
When processing parts, the cutting oil can improve the cooling performance of the workpiece and tool to increase the precision of the workpiece or extend the life of the tool and facilitate chip extraction. Since such cutting oil has a harmful effect on the environment and the human body due to additives such as sulfur, research on a minimum lubrication supply method using an eco-friendly oil is recently underway. The minimum lubrication supply method minimizes the amount of cutting oil used during processing and processes it, which can reduce the amount of cutting oil used, but has a problem in that cooling performance efficiency is poor. Therefore, this study conducted a study on mist cooling of lubricants to reduce the amount of cutting oil used and maximize the cooling effect of processing heat generated during tapping processing. Spray pressure, processing speed, direction, and lubricant spray amount, which are considered to have an effect on cooling performance, were set as process conditions, and the effect on temperature was analyzed by performing an experiment using the box benquin method among experiments were analyzed. Through the experimental analysis results, the optimal conditions for mist and processing that maximize the cooling effect were derived, and the validity of the results derived through additional experiments was verified. In the case of processing by applying the mist lubrication method verified through this study, it is considered that high-precision processing is possible by improving the cooling effect.
Zhou, Zhiyu;Hu, Yanjun;Ji, Jiangfei;Wang, Yaming;Zhu, Zefei;Yang, Donghe;Chen, Ji
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.8
/
pp.2529-2551
/
2022
Visual servoing (VS) based on the Kalman filter (KF) algorithm, as in the case of KF-based image-based visual servoing (IBVS) systems, suffers from three problems in uncalibrated environments: the perturbation noises of the robot system, error of noise statistics, and slow convergence. To solve these three problems, we use an IBVS based on KF, African vultures optimization algorithm enhanced extreme learning machine (AVOA-ELM), and fuzzy logic (FL) in this paper. Firstly, KF online estimation of the Jacobian matrix. We propose an AVOA-ELM error compensation model to compensate for the sub-optimal estimation of the KF to solve the problems of disturbance noises and noise statistics error. Next, an FL controller is designed for gain adaptation. This approach addresses the problem of the slow convergence of the IBVS system with the KF. Then, we propose a visual servoing scheme combining FL and KF-AVOA-ELM (FL-KF-AVOA-ELM). Finally, we verify the algorithm on the 6-DOF robotic manipulator PUMA 560. Compared with the existing methods, our algorithm can solve the three problems mentioned above without camera parameters, robot kinematics model, and target depth information. We also compared the proposed method with other KF-based IBVS methods under different disturbance noise environments. And the proposed method achieves the best results under the three evaluation metrics.
Journal of Radiopharmaceuticals and Molecular Probes
/
v.7
no.2
/
pp.85-91
/
2021
Selective amino acid conjugation of bulky antibodies is a valuable asset for real-time diagnosis and therapy. However, selective conjugation incorporating a chelate-bearing radioactive atom into an antibody without affecting its immunoreactivity is a challenging task. A bifunctional chelator (BFC), a selective amino acid-targeting probe, and a linker have been developed to overcome this problem. Here, we report the synthesis of a novel propylene cross-bridged chelator (PCB)-1,8-N,N'-bis-(carboxymethyl)-1,4,8,11-tetraazacyclotetradecane (TE2A)-luminol BFC via a click reaction and radiolabel it with a 64Cu ion for tyrosine-selective conjugation of trastuzumab. In the initial optimization study, we tried different oxidative addition conditions such as electro-oxidation, hemin, horseradish peroxidase, iodogen tube, chloramine-T, and iodo beads. In this study, up to 82% of 64Cu-PCB-TE2A-luminol was conjugated with the antibody in an iodo bead-catalyzed oxidative addition reaction with an isolated yield of 24.4%.
KIPS Transactions on Computer and Communication Systems
/
v.12
no.4
/
pp.135-142
/
2023
Recently, many companies are using public cloud services or building their own data center because digital transformation is expanding. The software-defined storage is a key solution for storing data on the cloud platform and its use is expanding worldwide. Software-defined storage has the advantage of being able to virtualize and use all storage resources as a single storage device and supporting flexible scale-out. On the other hand, since the size of an object is variable, an imbalance occurs in the use of the disk and may cause a failure. In this study, a method of redistributing objects by optimizing disk weights based on storage state information was proposed to solve the imbalance problem of disk use, and the experimental results were presented. As a result of the experiment, it was confirmed that the maximum utilization rate of the disk decreased by 10% from 89% to 79%. Failures can be prevented, and more data can be stored by optimizing the use of disk.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.260-262
/
2021
In recent years, many studies are being conducted to reduce the damage to humans in the event of a fire. In case of fire in large cities, evacuation route guidance services are provided using Mobile GIS (geographic information system). However, among the algorithms used in the existing evacuation route system, Dijkstra Algorithm has a problem that when the cost is negative, it cannot obtain an infinite loop or an accurate result value, and does not help to select an appropriate shortest route by searching all routes. For this reason, in this paper, we propose the shortest route guidance system based on A* Algorithm. In case of fire, the shortest route is searched and the shortest route is visualized and provided using a map service on a mobile device using mobile GIS.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.2A
/
pp.285-292
/
2006
In this study, a method determining the local bond-slip model from pure shear test results of CFRP sheet-concrete adhesive joints is proposed and local bond-slip models are presented. Adhesive joints with a specific bond-slip model, which is assumed as multi-linear curve in order to represent arbitary function, are solved numerically. The difference between the solution and test results are minimized for finding the bond-slip model. The model with bilinear curve is also optimized to verify the improvement of multi-linear model. The selected test results are ultimate load-adhesive length curves from a series of adhesive joints and load-displacement curves for each joint. The optimization problem is formulated by physical programming, and the optimized bond-slip model is found using genetic algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.