• Title/Summary/Keyword: Optimization of Investment

Search Result 142, Processing Time 0.032 seconds

COST BENEFIT ANALYSIS OF HIGHWAY SYSTEMS

  • Darren Thompson;Don Chen;Nick Walker;Neil Mastin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.494-496
    • /
    • 2013
  • Cost-Benefit Analysis (CBA) is a systematic optimization process that allows users to compare different alternatives and to determine if a project is a solid investment. Many state DOTs have included CBA in their pavement management systems (PMSs) to help allocate state funds for maintenance, rehabilitation, resurfacing, and reconstruction of pavements. In a typical CBA, each pavement type has an assigned weight factor which represents the level of importance of this pavement type. To conduct an accurate CBA, it is essential to select appropriate weight factors. Arbitrarily assigning weights factors to pavements can lead to biased and inaccurate funding allocation decisions. The purpose for this paper is to outline a method to develop an ideal set of weight factors that can be utilized to conduct more accurate CBA. To this end, a matrix of all possible weight factors sets was developed. CBA was conducted for each set of weight factors to obtain a population of possible optimization solutions. Then a regression analysis was performed to establish the relationship between benefit and weight factors. Finally, a multi-objective genetic algorithm was applied to select the optimal set of weight factors. The findings from this study can be used by state DOTs to strategically manage their roadway systems in a cost effective manner.

  • PDF

Active Distribution System Planning Considering Battery Swapping Station for Low-carbon Objective using Immune Binary Firefly Algorithm

  • Shi, Ji-Ying;Li, Ya-Jing;Xue, Fei;Ling, Le-Tao;Liu, Wen-An;Yuan, Da-Ling;Yang, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.580-590
    • /
    • 2018
  • Active distribution system (ADS) considering distributed generation (DG) and electric vehicle (EV) is an effective way to cut carbon emission and improve system benefits. ADS is an evolving, complex and uncertain system, thus comprehensive model and effective optimization algorithms are needed. Battery swapping station (BSS) for EV service is an essential type of flexible load (FL). This paper establishes ADS planning model considering BSS firstly for the minimization of total cost including feeder investment, operation and maintenance, net loss and carbon tax. Meanwhile, immune binary firefly algorithm (IBFA) is proposed to optimize ADS planning. Firefly algorithm (FA) is a novel intelligent algorithm with simple structure and good convergence. By involving biological immune system into FA, IBFA adjusts antibody population scale to increase diversity and global search capability. To validate proposed algorithm, IBFA is compared with particle swarm optimization (PSO) algorithm on IEEE 39-bus system. The results prove that IBFA performs better than PSO in global search and convergence in ADS planning.

A Study on Multi-criteria Trade-off Structure between Throughput and WIP Balancing for Semiconductor Scheduling (반도체/LCD 스케줄링의 다목적기준 간 트레이드 오프 구조에 대한 연구)

  • Kim, Kwanghee;Chung, Jaewoo
    • Korean Management Science Review
    • /
    • v.32 no.4
    • /
    • pp.69-80
    • /
    • 2015
  • The semiconductor industry is one of those in which the most intricate processes are involved and there are many critical factors that are controlled with precision in those processes. Naturally production scheduling in the semiconductor industry is also very complex and studied by the industry and academia for many years; however, still there are many issues left unclear in the problem. This paper proposes an multi-objective optimization-based scheduling method for semiconductor fabrication(fab). Two main objectives are throughput maximization and meeting target production quantities. The first objective aims to reduce production cost, especially the fixed cost incurred by a large investment constructing a new fab facility. The other is meeting customer orders on time and also helps a fab maintain stable throughput through controlled WIP balancing in the long run. The paper shows a trade-off structure between the two objectives through experimental studies, which provides industrial practitioners with useful references.

A Study on the System Loss Minimizing Algorithm by Optimal Re-location of Static Condenser Using System Power Loss Sensitivity (계통손실 감소를 위한 전력용 콘덴서의 適正 再配置에 대한 연구)

  • 이상중;김건중;정태호;김원겸;김용배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.1
    • /
    • pp.21-24
    • /
    • 1995
  • The larger and the more complicated the system size and configuration grow, the more serious the system loss problem becomes. Exessive system loss causes severs system voltage depression, which even may result in system voltage collapse. This paper proposes an effective tool for minimizing the system power loss by optimal re-location of the static condenser based on the system loss sensitivity index .lambda.$_{Q}$. It is possible to determine the optimal location and amount of VAR investment for minimizing the system loss by priority of .lambda.$_{Q}$ index given for each bus. Several computational techniques for avoiding divergency of the load flow solution are proposed. The loss sensitivity index .lambda.$_{Q}$ uses information of normal power flow equations and their Jacobians. Two case studies proved the effectiveness of the algorithm proposed.posed.

  • PDF

Stock Trading Model using Portfolio Optimization and Forecasting Stock Price Movement (포트폴리오 최적화와 주가예측을 이용한 투자 모형)

  • Park, Kanghee;Shin, Hyunjung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.535-545
    • /
    • 2013
  • The goal of stock investment is earning high rate or return with stability. To accomplish this goal, using a portfolio that distributes stocks with high rate of return with less variability and a stock price prediction model with high accuracy is required. In this paper, three methods are suggested to require these conditions. First of all, in portfolio re-balance part, Max-Return and Min-Risk (MRMR) model is suggested to earn the largest rate of return with stability. Secondly, Entering/Leaving Rule (E/L) is suggested to upgrade portfolio when particular stock's rate of return is low. Finally, to use outstanding stock price prediction model, a model based on Semi-Supervised Learning (SSL) which was suggested in last research was applied. The suggested methods were validated and applied on stocks which are listed in KOSPI200 from January 2007 to August 2008.

Evaluation of Congestion Cost and Loss Cost using DC Load Flow (직류조류계산을 이용한 혼잡비용과 손실비용 평가)

  • Bae, In-Su;Song, Woo-Chang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.93-98
    • /
    • 2012
  • Economics of available alternatives in the transmission planning are evaluated by the investment cost, loss cost and congestion cost. Congestion/loss cost is calculated in many years and many load levels by unit commitment of generators, optimal dispatch, load flow, judgement about transmission congestion and re-dispatch to reduce the congestion. The greatest difficulties to introduce variable optimization techniques on the transmission planning is the convergence of load flow. In this paper, economics in the transmission planning are evaluated using DC load flow, and case study is conducted on the Korea power system by proposed congestion/loss calculation methods.

Optimization of collaborative risk management in supply chain management (공급사슬경영에서의 협업적 리스크 관리의 최적화)

  • Jeong Jang Hwa;Lee Yeong Hae;Jeong Jeong U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.456-463
    • /
    • 2002
  • Nowadays. risk management in the enterprise is considered as the important activity. Risk management ran be defined as the activity which is the analysis of risk factors related to damages, the estimation of the magnitude of risk, and the determination of investment to protect damage in a company. Initially, risk management was originated in financial areas. But the concept of risk has been expanded in the enterprise. Most companies have extended their activities in various areas. In this tendency, most activities must be considered in supply chain So, risk management must be ronsidered as the concept in the viewpoint of supply chain. The framework of risk management in supply chain and the related mathematical model are represented in this paper. Risk management in supply chain ran provide a positive opportunity not only to protect various damages, but also to improve the relationship between partners.

  • PDF

Optimization of a Block Stacking Storage Model for a Single Product using (s, S) Inventory Policy ((s, S) 재고정책하에서 단일제품의 확률적 Block Stacking 저장모형의 최적화)

  • Yang, Moon-Hee;Chang, Kyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.1
    • /
    • pp.137-144
    • /
    • 1998
  • Block stacking, which involves the storage of unit loads in stacks within storage rows, is typically used in traditional warehouses to achieve a high space utilization at a low investment cost. In this paper, assuming that the demand size from a customer is an i.i.d. random variable, we develop a probabilistic block stacking storage model and its algorithm for a singles product, which minimizes the time-overage floor space requirement under an (s, S) inventory policy and the violation of the FIFO lot rotation rule only in a single partially-occupied row.

  • PDF

A New Techno-Economic Modeling for ATM Based High-Speed Networks (ATM 기반 초고속 정보통신망 기술경제성 평가 모형)

  • 이영호;김정헌;김영부;이순석;강국창
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.1
    • /
    • pp.115-129
    • /
    • 2003
  • This paper Is concerned with a new techno-economic model Ing of ATM based h19h-speed networks. Coupled with advances of technology, the rapid development of new telecommunication services significantly increases the magnitude of risk in making an Investment decision. Naturally, the success of techno-economic modeling depends on how effectively we manage underlying risk factors such as cost and technology To deal with risk factors, we need to rely on modern decision and risk analysis while Implementing mathematical optimization for solving a complex capacity expansion problem of telecommunication systems during the planning period. We provide a case study that will enhance our understanding of the techno-economic analysis for emerging telecommunication systems.

A Network Capacity Model for Multimodal Freight Transportation Systems

  • Park, Min-Young;Kim, Yong-Jin
    • Journal of Korea Port Economic Association
    • /
    • v.22 no.1
    • /
    • pp.175-198
    • /
    • 2006
  • This paper presents a network capacity model that can be used as an analytical tool for strategic planning and resource allocation for multimodal transportation systems. In the context of freight transportation, the multimodal network capacity problem (MNCP) is formulated as a mathematical model of nonlinear bi-level optimization problem. Given network configuration and freight demand for multiple origin-destination pairs, the MNCP model is designed to determine the maximum flow that the network can accommodate. To solve the MNCP, a heuristic solution algorithm is developed on the basis of a linear approximation method. A hypothetical exercise shows that the MNCP model and solution algorithm can be successfully implemented and applied to not only estimate the capacity of multimodal network, but also to identify the capacity gaps over all individual facilities in the network, including intermodal facilities. Transportation agencies and planners would benefit from the MNCP model in identifying investment priorities and thus developing sustainable transportation systems in a manner that considers all feasible modes as well as low-cost capacity improvements.

  • PDF