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Abstract

Block stacking, which involves the storage of unit loods in stacks within storage rows, is
typically used in traditional worehouses to achieve a high space utilizotion at o low investment

In this paper, assuming that the demand size from a customer is an i.i.d. random variable,
we develop a proboabilistic block stacking storage model and its algorithm for a single product,
which minimizes the time-average floor space requirement under an (s, S} inventory policy ond
the violation of the FIFO lot rotation rule only in a single partially-occupied row.

1. Introduction

e to many factors including space cost and operating
cost in warehousing, automated storage/retrievallAS/R)
systems have been dominating continunsly over tradition-
al warehouses. However the recent proportion of tradition-
al warehouses is still higher than that of AS/R systems
n the world. Block stacking, which involves the storage
of unit loads in stacks within storage rows, is typically
used in traditional warchouses lo achieve a high space
utilization at a low investment cost [4].

The design of a block sacking storage system is

characterized by: the depth of the storage row, the number

of storage rows required for a given product lot, and the
height of the stack. For a single product, factors that may
influence the optimum row depth include lot size, load
dimensions, aisle widths, row clearance, allowable stack-
ing heights, sicrage/retrieval times, and storagefretrieval
distribution [4].

The research on the field of block stacking storage
systems has been very inactive. Matson [3], one of the
representative researcher in this field, developed various
deterministic blocking stacking storage models for a single
and muitiple products in order to minimize expected floor
space requirement assuming different inventory policies.
However Matson did not suggest a deterministic model
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based on (s, S) inventory policy due to the mathematical
complexity of deterministic approach. In this paper, we
cevelop a basic probabilistic block stacking storage modet
with a slighlly modified (s, 8) inventory policy and
suggest an algorithm which minimizing time-average floor
space requirement. For convenjence, we summarize the

rotations used in this paper in Table 4 in advance.

Table 4. Summary of notatiens used.

[ Notation explanation

: n
i A, n-th renewal epoch defined as ki D,. A=0
| A width of aisle

¢ clearance betwsen rows
! D, the demand in the k-th day
*i Fid) | Prob{D.<d}

. H height of unit load
" H, |height of ceiling in a warehouse

e 012..}
S {123}
oL inventory level at the start of day k

L Length of unit foad

Nfa) |sup{n:A.<a}

Nt} | number of rows required for storage at time t
Mia} | E[N{a)]

R{t} |floor space requirement at time t

S safety stack level

8 maximum inventory on hand

5. {s.(8+1),(5+2),....8}

floor space required for a row including half of .

Rix) the aisle floor space in front of a row i

T, r-th regeneration epach

U a randem variable representing the sojourn time
! of inventory level

v minimum number of rows required during the

inventory cycle

W width of unit load

X row depth in unit load

maximum number of rows required during the
inventory cycle

2z number of siorage tiers or levels in unit toad

2. A Probabhilistic Block Stacking Sterage
Model

2.1 Limiting Probability of an {s, S) inventory policy

Space requirement for a blocking stacking storage
system in a warghouse depends on various inventory
policies. For two positive integer parameters s and § (s
<8}, consider an (s, S) inventory policy for replenishing
inventory in a warehouse; A replenishment decision is
made based on the current inventory cbserved at the start
of each day. If the inventory position is at least s, then
no action is tzken; If the inventory is less than s, say ],
than the amount (S-]} is ordered so that the amount on
hand plus on order equals S. We assume that the
additional stock which is ordered is delivered virtually
immediately. It follows that the set of inventory on hand,
S.. becomes {s(s+ I}-S]. In addition, we assume
that all of the demanded items requested during a day
are immediately retrieved at the time of each request and
begin to be delivered simultaneously from the same place
at the same time since deliveries are restricted to 2
particular time band, for example, from 11 p.m. 1o § a.
m. of the next day.

Let D, be iid. nonnegative random variables with
distribution function F( - }, representing the demand irll1 the
k-th day where kel" = | 1,23, | . Define A = kE:Dk
and for a=0 Nfa)=sup | m:A <a|. Then {Na)a=0]
is a renewal counting process with renewal epochs,
[Anel’} where A=Cand Pis [0,1,2, }. Note that
we do not count a renewal at A, ie., N(a)=0 for 0<a
{A,. Figure | shows a sample path of {Nfa)a=0].

Now determine the distribution of the number of items
in inventory. Without loss of generality the inventory
initially contains 8 items and let I, be the inventory level
at the start of day k. le, [=8-A, for keT. Then
{IkEl'] is regenerative with state space, S.. since
there exists the first regeneration epoch, T,, such that T;=
N(S-s)}+1 and the continuation of [ ke€l'| beyond T.
is a probabilistic replica of the process beginning at time
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Figure 1. A somple path of | Nid),az0}.
zero as shown in Figure 2. Let the set of regeneration Let p, be 1(]irn Prob | L=j | and define M(a) 1o be a
et
epochs be { T r&l’}, where T, )T, for r€I" and T=0. renewal function, E[N(a)]. By renewal argument, the
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Figure 2. A sample path of |l kel®| with 5=15 and s=3.
Assume that E(T,, -T X for reT, and that P [ T, <t renewal equation can be obtained as

has a density on some interval, then there exists a limiting

a
distribution of I, according to the existence theorem[2). Mia) = Fla)+ IMla- j}fj for agll’
j=t
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where £=F(j)-F(j-1} for acI* and f=F(0). For the easy

computation of M{a), replacing a with zere results in

fa
M(0)=(l~fu) and
F) + TMa- )
Mia) = s for ael (1

(1-f)

From (1), M{a) for 2€1" can be computed in tura since
the right hand side of (1) mvolves only M(0), M{1), ..
, Mia-1).

For je§,, let U be a random variable representing
the sojourn time of inventory level j during {T,, T,]. Since
the number of days before the inventory drops below a
is N(S-a)+1 for s<a<§ during [T, T], and U, can be
considered as the duration, the number of days before the
inventory drops below j minus the number of days before
the inventory drops below j+1, we have

U, = Nl0}1 for j=S
NES-i)-Ni(S-j-1) for s=j<(S-1) and

E(U) = M(0)+ 1 for j=5§

M(S-J)-M(S-j-1)

for s=j=(8-1) 2

It follows thas

M)+ 1
M(S-s)+1

if s<j<(S-1) {3

P, = kE’n;lol’rob [L=1) =

M(S ) -M(Sj- 1)
MiS-s)+ 1

if §=§

! otherwise

where 'ezs p=1. Table 1 summarizes (3).
™
2.2 Block Stacking Storage Requirement based on
our inventory policy

During the siorage and retrieval cycle of a product lot
in a block stacking storage system, vacancies can occur
in a storage row. To achieve first-in, first-out {FIFQ) lot
rotation, these vacant storage positions cannot be used for
storage of other products or lots until all loads have been
withdrawn from the row [4], However, in order to save
floor space, we assume FIFQ lot rotation rule except for
some safety stock in a single partially-occupied row.

For example, suppose that safety stock occupics three

rows, two rows fully occupied and one row partially

Table 1. The limiting probability of | I, kel }.

Inventory, | Mumber of rows required, m ' Limiting probability, p,
S _8 [ M{0)+1 ]
I %z - FM(S-s}+1 |
{8-1) [ M{1)-M(0} }
51 e ! TM(SS)+1 | |
: (8-2) [ M{2)-M{1) |
5 s e TS T
. {5-) { M{j-Mij-1) )
S e wés-sgn | n
1 (s+1) [ M(S5- 11 MiSs2) | o
s+ e | [MSsh]
s { M(S-s}-M(S-s-1) | 5
s T | TM(S-skel ] |




occupied. When a replenishment lot arrives, we assume
that some loads of the replenishment lot are stacked in
the partially-occupied row first of afl and other remaining
loads will be stored in the other available empty rows.
Hence the safety stock in the partially occupied row do
not follow the FIFO rule any longer.

Let R,{x) be the floor space requirement for & row with
a row depth being x in unit load. which 15 the grayed
area as shown in Figure 3. Assume that half of the aisle
floor space in front of a row belongs 1o the floor space
requirement for a row. Then R(x} = (W-+cH0.5A+xL)
where W is the width of unit load, ¢ is the clearance

between rows. A is the width of aisle, L is the length of

unit load.
—
+— W —
T
t L
i ;

Figure 3. A blocking stacking storage with x=3 ond y=4.

Let Rit} be the floor space requirement at time t and
let N,(t) be the number rows required at time . Since R
(=R (x)N.(t}) and N,(1) depends on inventory level, say
j, Rl=R{x} [‘é“ where z is the number of storage
tiers or levels and [§ — denotes the smallest integer
greater than or equal to xi. Since each of | R{tht20]
and | Ny (01=0] is cleatly a regenerative process, the
expectation of R(t) in the long run, E(R), will be
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= S

ER) = Lim E(R()}
)

= Ry 00 im E{N, (1)

= R (XJE(N}) (4
S .

- J_—l |

= RL(X)J-:ES!—XZ P, (51

2.3 Problem Definition of a Probabilistic Block
Stacking Storage Model and Algorithm

Now the depth of the storage row can be oblained by

minimizing the time-average floor space requirement as

follows; for integers x and y,

S .

- Mining - s -
BSP: Minimize E(R) = RL(x}j:s' 519
subject to W= '_q ,

H
= ﬁc_ J

where H is the height of the wnit load, H, is the
maximum stacking height, | & _| denotes the largest
iﬁleger less than or equal to §.

Since the number of practical aliematives is small,
enumeration over X is the natural method for solving this

problem. Our algorithm can be described as follows;

ALG[BSP]:

H
Step Iz — L

|
s
Raax 7 | E ;

Ry + big value
Vyx + big value

Step 2. For x from | 10 Xy,
Begin
Compute E(R) and V(R)
If E{R)=R,,, and V(R}V, then V. «— V(R}and
X X
If B(R} { R, then Ry, < E(R)
X e X
Ve +— VIR)
End
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2.4 Example

Consider the daily demands forming & sequence of
Bernoulli random variables with f=1-p and {=p. ie.
2=pp"* for k=0 orl, 0<p<1. From (I). M)

van be recursively obtained as,

i) = 2P gy L)
p p

-5+ l), and E(Uj)=l from (2), p,

P

Since M(S-sk1=

can be computed from (3) as

1 .
p = m for jESinv'

Consider (4). Let v and y be the minimum and
maximum number of rows required during the inventory
cycle respectively, Since the maximum number of items

$
and -7
g !

. . 5
per row is xz, v and y will be I_E
respectively. For a given x value, the expected sojourn

. . (vxz-s5+ 1
time of row number m can be obtained as (oxz-s5+1)

P
for m=v, % for m=(v+1),..., (y-1), and {S-xz[(] -Di

for m=y from (2). Thus as shown in Table 2, we have

Prob | N =m | = Yzt ]

(§-s+ 1) for m = v

2 0050 e i = e
(s _";3+ 1) for m = (v+1), . y-1)
[S-%Z(I-l” for m =y

(§-5+1)

ER) = Ry{XER,)

. vIS-xaly-D] & vbese U
aC] Fodn,

{§-5+ 1 i §-s+ 1} ¢
R LSl v- D21 T
G AS-s+1) il
ki e w128 xly- iy v-1-2s- 1 T
BSPEX: Mnie BR) - R () TR ]
subject to xyérgi
HC
ZﬂL*]_']-J

Suppose that $=30 unit loads, s=5 unit loads, L=5(¥,
W=dlY, ¢=%, A=144", and z=3. We enumerate over X
from | 10 %,,,=9 as shown in Table 3 which summarized
, given each value of x and other statistics, Given x, we
compute Prob [N = m} for v<m=<y. For example,
given x=3, since 1<m=4, we need one row when
5=3<9, two rows when 10<j<I{§, three rows when
19<7=27, and four rows when 28<)=<30. Since p-= 2_16
for je |567--30], Prob{N=m} will be 0.1923,
0.3462, 0.3462, and 0.1154 respectively for m=1,234.

Table 2. The fimiting probability of [ Ny}, t=07] in the Example.

Inventory range Number of rows required, m Limiting probability, Prob{N,=m}
xzfy-1) (j= 8 y=|‘%‘; j—y—)f[ S'SX'ZSE;” |
' xzly-2) {jg xzly-1) : fy-1} S_);Z”
. : ¥4 ;
xzly-3) { j= xzly-2) - (y-2) Sor ;
xzv { j< xzlvet) fws1) 8_2‘31
1 G )
fs-1) ¢ j= wzv V=é—%1| ﬂ(fgs—sv-ﬂ}l
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Table 3. p, for Example and other statistics given x=1,2,...9,10.

; X | ; i !
Numbei 1 2 3 4 5 8 7 8 9 10
of rows _
i 1 ' - i 00769 | 0.1923 0,3077. 04231 | 05385 | 0.6538 . 0.7692 | 0.8846 | 1.0000 .
2 00769 | 02308 | 03462 | 04615 | 05760 | 04615 | 03462 | 02308 | 01154 |
3 01134 | 0.2308 ! 0.3462 0.2308- - - - -
4 01154 | 02308 o154 - - - . - a
5 01154 02308 | - L - - . i
6 Conss - ; .- ; A e
7 01154 | - ; ) i } i .
8 o186 | - | - . - -
9 Coas4 - . . - . - - ;
10 01154 | - ) o } . -
TR (Y 5246 | 7306 | 9546 | 11,69 | 10.846 | 15996 | 18146 ' 20296 22446 | 24596 |
BN} 6.15 Ky 2.38 192 1.58 1.46 135 | 123 112 1.00
E(R) () 32,283 | 24,464 ¢ 22_.75_4 © 22482 [F21834 | 23373 24427 | 24,980 ' 25,036 24_.59_5_
VIR) (107 1y 173 87 78 73 - 47 6.4 i 7.5 73 . 54 0.0 .
From (4}, E(N,)=2.38 rows. The optimal row depth js x*= is based on probabilistic demand assumption and an (s,
5, which gives the minimum floor space requirement in S} inventory policy. It is, however, unrealistic in the other
the long run as E(R)=21.834 {i%. sense that the additional stock which is ordered is
delivered virtuatly immediately. If we relax this assump-
3. Conclusion tion, p. could be solved using a semi-Markov chain and
this could be one of further researches. For multiple
We developed a probabilistic bleck stacking storage products case, other decision variables must be considered
model for a single product by assuming that demand size including the optimum unique row depths, the assignments
is a random variable under an {s, S} inventory policy and of products 1o depths, and aggregate space requirements,
e violation of the FIFO Jot rotation rule only in a single etc. The related interaction of factors above is mathemal-
sartially-occupied row. In addition, we suggested 2 lcally so complicated that this could be another one of
mnethodology for determining an optimal row depth by further researches in the future.
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