• Title/Summary/Keyword: Optimization of Investment

Search Result 142, Processing Time 0.032 seconds

Sequential optimization for pressure management in water distribution networks

  • Malvin S. Marlim;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.169-169
    • /
    • 2023
  • Most distributed water is not used effectively due to water loss occurring in pipe networks. These water losses are caused by leakage, typically due to high water pressure to ensure adequate water supply. High water pressure can cause the pipe to burst or develop leaks over time, particularly in an aging network. In order to reduce the amount of leakage and ensure proper water distribution, it is important to apply pressure management. Pressure management aims to maintain a steady and uniform pressure level throughout the network, which can be achieved through various operational schemes. The schemes include: (1) installing a variable speed pump (VSP), (2) introducing district metered area (DMA), and (3) operating pressure-reducing valves (PRV). Applying these approaches requires consideration of various hydraulic, economic, and environmental aspects. Due to the different functions of these approaches and related components, an all-together optimization of these schemes is a complicated task. In order to reduce the optimization complexity, this study recommends a sequential optimization method. With three network operation schemes considered (i.e., VSP, DMA, and PRV), the method explores all the possible combinations of pressure management paths. Through sequential optimization, the best pressure management path can be determined using a multiple-criteria decision analysis (MCDA) to weigh in factors of cost savings, investment, pressure uniformity, and CO2 emissions. Additionally, the contribution of each scheme to pressure management was also described in the application results.

  • PDF

A Study on Periodic Review Inventory System under Stochastic Budget Constraint (확률적 예산 제약을 고려한 주기적 재고관리 정책에 대한 연구)

  • Lee, Chang-Yong;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.165-171
    • /
    • 2014
  • We develop an optimization algorithm for a periodic review inventory system under a stochastic budget constraint. While most conventional studies on the periodic review inventory system consider a simple budget limit in terms of the inventory investment being less than a fixed budget, this study adopts more realistic assumption in that purchasing costs are paid at the time an order is arrived. Therefore, probability is employed to express the budget constraint. That is, the probability of total inventory investment to be less than budget must be greater than a certain value assuming that purchasing costs are paid at the time an order is arrived. We express the budget constraint in terms of the Lagrange multiplier and suggest a numerical method to obtain optional values of the cycle time and the safety factor to the system. We also perform the sensitivity analysis in order to investigate the dependence of important quantities on the budget constraint. We find that, as the amount of budget increases, the cycle time and the average inventory level increase, whereas the Lagrange multiplier decreases. In addition, as budget increases, the safety factor increases and reaches to a certain level. In particular, we derive the condition for the maximum safety factor.

Multiperiod Mean Absolute Deviation Uncertain Portfolio Selection

  • Zhang, Peng
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.63-76
    • /
    • 2016
  • Multiperiod portfolio selection problem attracts more and more attentions because it is in accordance with the practical investment decision-making problem. However, the existing literature on this field is almost undertaken by regarding security returns as random variables in the framework of probability theory. Different from these works, we assume that security returns are uncertain variables which may be given by the experts, and take absolute deviation as a risk measure in the framework of uncertainty theory. In this paper, a new multiperiod mean absolute deviation uncertain portfolio selection models is presented by taking transaction costs, borrowing constraints and threshold constraints into account, which an optimal investment policy can be generated to help investors not only achieve an optimal return, but also have a good risk control. Threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Based on uncertain theories, the model is converted to a dynamic optimization problem. Because of the transaction costs, the model is a dynamic optimization problem with path dependence. To solve the new model in general cases, the forward dynamic programming method is presented. In addition, a numerical example is also presented to illustrate the modeling idea and the effectiveness of the designed algorithm.

Development of Transmission Expansion Planning Optimization Software Considering Integration of Generation and Transmission Facilities (발·송전설비 통합성을 고려한 전력계통계획 전산모형 프로그램 개발)

  • Hur, Don;Jung, Hae-Sung;Ryu, Heon-Su;Cho, Kong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.16-26
    • /
    • 2010
  • The transmission valuation methodology we propose here captures the interaction between generation and transmission investment decisions recognizing that a transmission expansion can impact the profitability of new resources investment, so that a methodology should consider both the objectives of investors in resources and the transmission planner. In this perspective, this paper purports to develop the mixed-integer programming based transmission expansion planning optimization software, which is well designed to determine the construction time and place of new generators, transmission lines, and substations as well as their capacities to minimize total expenditures related to their investment and operations while meeting technical constraints such as capacity margin, constitution ratio of power resources, spinning reserves, energy and fuel constraints, transmission line outages and losses, pi-type branching, and so on. Finally, Garver's simple system is adopted to validate not simply the accuracy but the efficiency of the proposed model in this paper.

Optimal Design of a Direct-Drive Permanent Magnet Synchronous Generator for Small-Scale Wind Energy Conversion Systems

  • Abbasian, Mohammadali;Isfahani, Arash Hassanpour
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.379-385
    • /
    • 2011
  • This paper presents an optimal design of a direct-drive permanent magnet synchronous generator for a small-scale wind energy conversion system. An analytical model of a small-scale grid-connected wind energy conversion system is presented, and the effects of generator design parameters on the payback period of the system are investigated. An optimization procedure based on genetic algorithm method is then employed to optimize four design parameters of the generator for use in a region with relatively low wind-speed. The aim of optimization is minimizing the payback period of the initial investment on wind energy conversion systems for residential applications. This makes the use of these systems more economical and appealing. Finite element method is employed to evaluate the performance of the optimized generator. The results obtained from finite element analysis are close to those achieved by analytical model.

Laser Welding Application in Car Body Manufacturing

  • Shin, H.O.;Chang, I.S.;Jung, C.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.2-7
    • /
    • 2003
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows; optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4㎾ Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. This application was successfully launched mass production line in 2001. The laser-welded line of side panel consists of 122 stitches totally. And the length is about 2.4m.

  • PDF

Performance based design optimum of CBFs using bee colony algorithm

  • Mansouri, Iman;Soori, Sanaz;Amraie, Hamed;Hu, Jong Wan;Shahbazi, Shahrokh
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.613-622
    • /
    • 2018
  • The requirement to safe and economical buildings caused to the exploitation of nonlinear capacity structures and optimization of them. This requirement leads to forming seismic design method based on performance. In this study, concentrically braced frames (CBFs) have been optimized at the immediate occupancy (IO) and collapse prevention (CP) levels. Minimizing structural weight is taken as objective function subjected to performance constraints on inter-story drift ratios at various performance levels. In order to evaluate the seismic capacity of the CBFs, pushover analysis is conducted, and the process of optimization has been done by using Bee Algorithm. Results indicate that performance based design caused to have minimum structural weight and due to increase capacity of CBFs.

A Study on Portfolios Using Simulated Annealing and Tabu Search Algorithms (시뮬레이티드 어닐링와 타부 검색 알고리즘을 활용한 포트폴리오 연구)

  • Woo Sik Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.467-473
    • /
    • 2024
  • Metaheuristics' impact is profound across many fields, yet domestic financial portfolio optimization research falls short, particularly in asset allocation. This study delves into metaheuristics for portfolio optimization, examining theoretical and practical benefits. Findings indicate portfolios optimized via metaheuristics outperform the Dow Jones Index in Sharpe ratios, underscoring their potential to enhance risk-adjusted returns significantly. Tabu search, in comparison to Simulated Annealing, demonstrates superior performance by efficiently navigating the search space. Despite these advancements, practical application remains challenging due to the complexities in metaheuristic implementation. The study advocates for broader algorithmic exploration, including population-based metaheuristics, to refine asset allocation strategies further. This research marks a step towards optimizing portfolios from an extensive array of financial assets, aiming for maximum efficacy in investment outcomes.

Optimal Design Of Batch-Storage Network with Financial Transactions and Cash Flows (현금흐름을 포함하는 회분식 공정-저장조 망구조의 최적설계)

  • ;Lee, Euy-Soo;Lee, In-Beom;Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.956-962
    • /
    • 2005
  • This paper presents an integrated analysis of production and financing decisions. We assume that a cash storage unit is installed to manage the cash flows related with production activities such as raw material procurement, process operating setup, Inventory holding cost and finished product sales. Temporarily financial investments are allowed for more profit. The production plant is modeled by the Batch-Storage Network with Recycle Streams in Yi and Reklaitis (2003). The objective function of the optimization is minimizing the opportunity costs of annualized capital investment and cash/material inventory while maximizing stockholder's benefit. No depletion of all the material and cash storage units is major constraints of the optimization. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the cash and material inventory holdups. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two subproblems and analytical lot sizing equations under a mild assumption about the cash flow pattern of stockholder's dividend. The first subproblem is a separable concave minimization network flow problem whose solution yields the average material flow rates through the networks. The second subproblem determines the decisions about financial Investment. Finally, production and financial transaction lot sizes and startup times can be determined by analytical expressions as far as the average flow rates are calculated. The optimal production lot and storage sizes considering financial factors are smaller than those without such consideration. An illustrative example is presented to demonstrate the results obtainable using this approach.

Study of Drawing Optimum Switch Automation Rate to Minimize Reliability Cost (신뢰도 비용 최소화를 위한 개폐기의 최적 자동화율 도출에 관한 연구)

  • Chai, Hui-seok;Kang, Byoung-wook;Kim, Jin-seok;Moon, Jong-fil;Kim, Jae-chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.297-302
    • /
    • 2015
  • Replacing a manual switch installed in a feeder for a distribution system with an automatic one increases the reliability of the electric power system. This is because the automatic switch can shorten the duration of a fault the customer experiences by splitting the faulty section faster than the manual one does. However, improving the reliability of the distribution system may increase investment costs. Here, the investment costs include automatic switch cost, replacement work cost and labor cost. For this reason, importance should be attached to the proper balance between the increase of the investment costs and the improvement of the reliability of the distribution system. This article analyzed reliability index and economics when manual switches installed in a feeder (RBTS Bus2 model) was replaced by automatic ones. In addition, it attempted to draw the optimum rate of automation of manual switches by automatic ones using the GRG optimization method, considering the current economic requirements.