• 제목/요약/키워드: Optimization method

검색결과 9,151건 처리시간 0.033초

Operating condition optimization of liquid metal heat pipe using deep learning based genetic algorithm: Heat transfer performance

  • Ik Jae Jin;Dong Hun Lee;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2610-2624
    • /
    • 2024
  • Liquid metal heat pipes play a critical role in various high-temperature applications, with their optimization being pivotal to achieving optimal thermal performance. In this study, a deep learning based genetic algorithm is suggested to optimize the operating conditions of liquid metal heat pipes. The optimization performance was investigated in both single and multi-variable optimization schemes, considering the operating conditions of heat load, inclination angle, and filling ratio. The single-variable optimization indicated reasonable performance for various conditions, reinforcing the potential applicability of the optimization method across a broad spectrum of high-temperature industries. The multi-variable optimization revealed an almost congruent performance level to single-variable optimization, suggesting that the robustness of optimization method is not compromised with additional variables. Furthermore, the generalization performance of the optimization method was investigated by conducting an experimental investigation, proving a similar performance. This study underlines the potential of optimizing the operating condition of heat pipes, with significant consequences in sectors such as high temperature field, thereby offering a pathway to more efficient, cost-effective thermal solutions.

Frequency optimization for laminated composite plates using extended layerwise approach

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • 제12권6호
    • /
    • pp.541-548
    • /
    • 2012
  • This paper deals with the applicability of extended layerwise optimization method (ELOM) for frequency optimization of laminated composite plates. The design objective is the maximization of the fundamental frequency of the laminated plates. The fibre orientations in the layers are considered as design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary conditions.

Robust concurrent topology optimization of multiscale structure under load position uncertainty

  • Cai, Jinhu;Wang, Chunjie
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.529-540
    • /
    • 2020
  • Concurrent topology optimization of macrostructure and microstructure has attracted significant interest due to its high structural performance. However, most of the existing works are carried out under deterministic conditions, the obtained design may be vulnerable or even cause catastrophic failure when the load position exists uncertainty. Therefore, it is necessary to take load position uncertainty into consideration in structural design. This paper presents a computational method for robust concurrent topology optimization with consideration of load position uncertainty. The weighted sum of the mean and standard deviation of the structural compliance is defined as the objective function with constraints are imposed to both macro- and micro-scale structure volume fractions. The Bivariate Dimension Reduction method and Gauss-type quadrature (BDRGQ) are used to quantify and propagate load uncertainty to calculate the objective function. The effective properties of microstructure are evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The bi-directional evolutionary structural optimization (BESO) method is used to obtain the black-and-white designs. Several 2D and 3D examples are presented to validate the effectiveness of the proposed robust concurrent topology optimization method.

Sizing, geometry and topology optimization of trusses using force method and supervised charged system search

  • Kaveh, A.;Ahmadi, B.
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.365-382
    • /
    • 2014
  • In this article, the force method and Charged System Search (CSS) algorithm are used for the analysis and optimal design of truss structures. The CSS algorithm is employed as the optimization tool and the force method is utilized for analysis. In this paper in addition to member's cross sections, redundant forces, geometry and topology variables are considered as the optimization variables. Minimum complementary energy principle is used directly to analyze the structure. In the presented method, redundant forces are calculated by the CSS in order to minimize the energy function. Combination of the CSS and force method leads to an efficient algorithm in comparison to some of the optimization algorithms.

최적 제어를 통한 복합적층판의 형상최적화 (Shape Optimization in Laminated Composite Plates by Volume Control)

  • 한석영;백춘호;박재용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.277-282
    • /
    • 2003
  • The growth-strain method was applied to cutout optimization in laminated composite plates. Since the growth-strain method optimizes a shape by generating the bulk strain to make the distributed parameter uniform, the distributed parameter was chosen as Tsai-Hill value. In this study, of particular interest is to see whether the growth-strain method developed for shape optimization in isotropic media would work for laminated composite Plates. In volume control of the growth-strain method, it makes Tsai-Hill value at each element uniform in laminated composite plates under the predetermined volume. The shapes optimized by Tsai-Hill fracture index were compared with those of the initial shapes for the various load conditions and predetermined volumes of laminated composite plates. As a result, it was verified that volume control of the growth-strain method worked very well for cutout optimization in laminated composite plates.

  • PDF

Topology Optimization of Continuum Structures Using a Nodal Volume Fraction Method

  • Lee, Jin-Sik;Lim, O-Kaung
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권1호
    • /
    • pp.21-29
    • /
    • 2001
  • The general topology optimization can be considered as optimal material distribution. Such an approach can be unstable, unless composite materials are introduced. In this research, a nodal volume fraction method is used to obtain the optimum topology of continuum structures. This method is conducted from a composite material model composed of isotropic matter and spherical void. Because the appearance of the chessboard patterns makes the interpretation of the optimal material layout very difficult, this method contains a chessboard prevention strategy. In this research, several topology optimization problems are presented to demonstrate the validity of the present method and the recursive quadratic programming algorithm is used to solve the topology optimization problems.

  • PDF

기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계 (Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF

온도영향을 고려한 연수기 압력탱크의 신뢰성 최적설계 (Reliability Based Design Optimization of the Softwater Pressure Tank Considering Temperature Effect)

  • 배철호;김문성;서명원
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1458-1466
    • /
    • 2004
  • Deterministic optimum designs that are obtained without consideration of uncertainties could lead to unrealiable designs. Such deterministic engineering optimization tends to promote the structural system with less reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. This paper proposes the reliability based design optimization technique fur apressure tank considering temperature effect. This paper presents an efficient and stable reliability based design optimization method by using the advanced first order second moment method, which evaluates a probabilistic constraint for more accuracy. In addition, the response surface method is utilized to approximate the performance functions describing the system characteristics in the reliability based design optimization procedure.

표면 열전달율과 항력을 최소화한 극초음속 비행체 선두부 형상 최적설계 (A DESIGN OPTIMIZATION STUDY OF BLUNT NOSE HYPERSONIC FLIGHT VEHICLE MINIMIZING SURFACE HEAT-TRANSFER RATE AND DRAG)

  • 임설;서정일;김상덕;송동주
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.27-35
    • /
    • 2005
  • A design optimization of hypersonic flight vehicle has been studied by using upwind Navier-Stokes method and numerical optimization method. CFD method is linked to numerical optimization method by using a Bezier curve and a design optimization of blunt nose hypersonic flight vehicle has been studied. Heat transfer coefficient and drag coefficient are selected as objective functions or design constraints. The Bezier curve-based shape function was applied to blunt body shape.

An Improved Element Removal Method for Evolutionary Structural Optimization

  • Han, Seog-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.913-919
    • /
    • 2000
  • The purpose of this study was to develop a new element removal method for ESO (Evolutionary Structural Optimization), which is one of the topology optimization methods. ESO starts with the maximum allowable design space and the optimal topology emerges by a process of removal of lowly stressed elements. The element removal ratio of ESO is fixed throughout topology optimization at 1 or 2%. BESO (bidirectional ESO) starts with either the least number of elements connecting the loads to the supports, or an initial design domain that fits within the maximum allowable domain, and the optimal topology evolves by adding or subtracting elements. But the convergence rate of BESO is also very slow. In this paper, a new element removal method for ESO was developed for improvement of the convergence rate. Then it was applied to the same problems as those in papers published previously. From the results, it was verified that the convergence rate was significantly improved compared with ESO as well as BESO.

  • PDF