• 제목/요약/키워드: Optimization algorithm

검색결과 5,736건 처리시간 0.027초

Optimization study of a clustering algorithm for cosmic-ray muon scattering tomography used in fast inspection

  • Hou, Linjun;Huo, Yonggang;Zuo, Wenming;Yao, Qingxu;Yang, Jianqing;Zhang, Quanhu
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.208-215
    • /
    • 2021
  • Cosmic-ray muon scattering tomography (MST) technology is a new radiation imaging technology with unique advantages. As the performance of its image reconstruction algorithm has a crucial influence on the imaging quality, researches on this algorithm are of great significance to the development and application of this technology. In this paper, a fast inspection algorithm based on clustering analysis for the identification of the existence of nuclear materials is studied and optimized. Firstly, the principles of MST technology and a binned clustering algorithm were introduced, and then several simulation experiments were carried out using Geant4 toolkit to test the effects of exposure time, algorithm parameter, the size and structure of object on the performance of the algorithm. Based on these, we proposed two optimization methods for the clustering algorithm: the optimization of vertical distance coefficient and the displacement of sub-volumes. Finally, several sets of experiments were designed to validate the optimization effect, and the results showed that these two optimization methods could significantly enhance the distinguishing ability of the algorithm for different materials, help to obtain more details in practical applications, and was therefore of great importance to the development and application of the MST technology.

Optimization of active controlled system for structures using metaheuristic algorithms

  • Nirmal S. Mehta;Vishisht Bhaiya;K. A. Patel
    • Earthquakes and Structures
    • /
    • 제27권5호
    • /
    • pp.401-417
    • /
    • 2024
  • This study presents a method for optimization of weighting matrices of the linear quadratic regulator (LQR) control algorithm in order to design an optimal active control system using metaheuristic algorithms. The LQR is a widely used control technique in engineering for designing optimal controllers for linear systems by minimizing a quadratic cost function. However, the performance of the LQR strongly depends on the appropriate selection of weighting matrices, which are usually determined by some thumb rule or exhaustive search method. In the present study, for the optimization of weighting matrices, four metaheuristic algorithms including, Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO) and, Whale Optimization Algorithm (WOA) are considered. To generate optimal weighting matrices, the objective function used consists of displacement and absolute acceleration. During the optimization process, a response effectiveness factor is also checked for displacement and acceleration as a constraint for the proper selection of weighting matrices. To study the effectiveness of optimized active control system to those for the exhaustive search method, the various controlled responses of the system are compared with the corresponding uncontrolled system. The optimized weighting matrices effectively reduce the displacement, velocity, and acceleration responses of the structure. Based on the simulation study, it can be observed that GWO performs well compared to the PSO, GA, and WO algorithms. By employing metaheuristic algorithms, this study showcases a more efficient and effective approach to finding optimal weighting matrices, thereby enhancing the performance of active control systems.

Multi-objective optimization of foundation using global-local gravitational search algorithm

  • Khajehzadeh, Mohammad;Taha, Mohd Raihan;Eslami, Mahdiyeh
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.257-273
    • /
    • 2014
  • This paper introduces a novel optimization technique based on gravitational search algorithm (GSA) for numerical optimization and multi-objective optimization of foundation. In the proposed method, a chaotic time varying system is applied into the position updating equation to increase the global exploration ability and accurate local exploitation of the original algorithm. The new algorithm called global-local GSA (GLGSA) is applied for optimization of some well-known mathematical benchmark functions as well as two design examples of spread foundation. In the foundation optimization, two objective functions include total cost and $CO_2$ emissions of the foundation subjected to geotechnical and structural requirements are considered. From environmental point of view, minimization of embedded $CO_2$ emissions that quantifies the total amount of carbon dioxide emissions resulting from the use of materials seems necessary to include in the design criteria. The experimental results demonstrate that, the proposed GLGSA remarkably improves the accuracy, stability and efficiency of the original algorithm.

개선된 유전자 알고리즘을 이용한 산형 골조의 최적화 (Optimization of Gable Frame Using the Modified Genetic Algorithm)

  • 이홍우
    • 한국공간구조학회논문집
    • /
    • 제3권4호
    • /
    • pp.59-67
    • /
    • 2003
  • Genetic algorithm is one of the best ways to solve a discrete variable optimization problem. Genetic algorithm tends to thrive in an environment in which the search space is uneven and has many hills and valleys. In this study, genetic algorithm is used for solving the design problem of gable structure. The design problem of frame structure has some special features(complicate design space, many nonlinear constrants, integer design variables, termination conditions, special information for frame members, etc.), and these features must be considered in the formulation of optimization problem and the application of genetic algorithm. So, 'FRAME operator', a new genetic operator for solving the frame optimization problem effectively, is developed and applied to the design problem of gable structure. This example shows that the new opreator has the possibility to be an effective frame design operator and genetic algorithm is suitable for the frame optimization problem.

  • PDF

레이저 토치의 절단경로 생성을 위한 혼합형 유전알고리즘 (A Hybrid Genetic Algorithm for Generating Cutting Paths of a Laser Torch)

  • 이문규;권기범
    • 제어로봇시스템학회논문지
    • /
    • 제8권12호
    • /
    • pp.1048-1055
    • /
    • 2002
  • The problem of generating torch paths for 2D laser cutting of a stock plate nested with a set of free-formed parts is investigated. The objective is to minimize the total length of the torch path starting from a blown depot, then visiting all the given Parts, and retuning back to the depot. A torch Path consists of the depot and Piercing Points each of which is to be specified for cutting a part. The torch path optimization problem is shown to be formulated as an extended version of the standard travelling salesman problem To solve the problem, a hybrid genetic algorithm is proposed. In order to improve the speed of evolution convergence, the algorithm employs a genetic algorithm for global search and a combination of an optimization technique and a genetic algorithm for local optimization. Traditional genetic operators developed for continuous optimization problems are used to effectively deal with the continuous nature of piercing point positions. Computational results are provided to illustrate the validity of the proposed algorithm.

Optimum design of steel frame structures by a modified dolphin echolocation algorithm

  • Gholizadeh, Saeed;Poorhoseini, Hamed
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.535-554
    • /
    • 2015
  • Dolphin echolocation (DE) optimization algorithm is a recently developed meta-heuristic in which echolocation behavior of Dolphins is utilized for seeking a design space. The computational performance of meta-heuristic algorithms is highly dependent to its internal parameters. But the computational time of adjusting these parameters is usually extensive. The DE is an efficient optimization algorithm as it includes few internal parameters compared with other meta-heuristics. In the present paper a modified Dolphin echolocation (MDE) algorithm is proposed for optimization of steel frame structures. In the MDE the step locations are determined using one-dimensional chaotic maps and this improves the convergence behavior of the algorithm. The effectiveness of the proposed MDE algorithm is illustrated in three benchmark steel frame optimization test examples. Results demonstrate the efficiency of the proposed MDE algorithm in finding better solutions compared to standard DE and other existing algorithms.

Network Selection Algorithm for Heterogeneous Wireless Networks Based on Multi-Objective Discrete Particle Swarm Optimization

  • Zhang, Wenzhu;Kwak, Kyung-Sup;Feng, Chengxiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권7호
    • /
    • pp.1802-1814
    • /
    • 2012
  • In order to guide users to select the most optimal access network in heterogeneous wireless networks, a network selection algorithm is proposed which is designed based on multi-objective discrete particle swarm optimization (Multi-Objective Discrete Particle Swarm Optimization, MODPSO). The proposed algorithm keeps fast convergence speed and strong adaptability features of the particle swarm optimization. In addition, it updates an elite set to achieve multi-objective decision-making. Meanwhile, a mutation operator is adopted to make the algorithm converge to the global optimal. Simulation results show that compared to the single-objective algorithm, the proposed algorithm can obtain the optimal combination performance and take into account both the network state and the user preferences.

A Shaking Optimization Algorithm for Solving Job Shop Scheduling Problem

  • Abdelhafiez, Ehab A.;Alturki, Fahd A.
    • Industrial Engineering and Management Systems
    • /
    • 제10권1호
    • /
    • pp.7-14
    • /
    • 2011
  • In solving the Job Shop Scheduling Problem, the best solution rarely is completely random; it follows one or more rules (heuristics). The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing, and Tabu search, which belong to the Evolutionary Computations Algorithms (ECs), are not efficient enough in solving this problem as they neglect all conventional heuristics and hence they need to be hybridized with different heuristics. In this paper a new algorithm titled "Shaking Optimization Algorithm" is proposed that follows the common methodology of the Evolutionary Computations while utilizing different heuristics during the evolution process of the solution. The results show that the proposed algorithm outperforms the GA, PSO, SA, and TS algorithms, while being a good competitor to some other hybridized techniques in solving a selected number of benchmark Job Shop Scheduling problems.

전역 탐색 알고리듬을 이용한 이동 무선통신 네트워크의 최적화에 대한 연구 (A Study on Mobile Wireless Communication Network Optimization Using Global Search Algorithm)

  • 김성곤
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.87-93
    • /
    • 2004
  • 이동 무선 통신 네트워크를 설계할 때 기지국(BTS), 기지국 콘트롤러(BSC), 이동 교환국(MSC)의 위치는 매우 중요한 파라미터들이다. 기지국의 위치를 설계할 때는 여러 가지 복잡한 변수들을 잘 조합하여 비용이 최소가 되도록 설계해야 한다 이러한 문제를 해결하는데 필요한 알고리듬이 전역 최적화 알고리듬이며, 지금까지 전역 최적화 검색 기술로는 Random Walk, Simulated Annealing, Tabu Search, Genetic Algorithm이 사용되어 왔다. 본 논문은 이동 통신 시스템의 기지국, 기지국 콘트롤러, 이동 교환국의 위치 최적화에 위의 4가지 알고리듬들을 적용하여 각 알고리듬의 결과를 비교 분석하며 알고리듬에 의한 최적화 과정을 보여준다.

  • PDF

Knee-driven many-objective sine-cosine algorithm

  • Hongxia, Zhao;Yongjie, Wang;Maolin, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.335-352
    • /
    • 2023
  • When solving multi-objective optimization problems, the blindness of the evolution direction of the population gradually emerges with the increase in the number of objectives, and there are also problems of convergence and diversity that are difficult to balance. The many- objective optimization problem makes some classic multi-objective optimization algorithms face challenges due to the huge objective space. The sine cosine algorithm is a new type of natural simulation optimization algorithm, which uses the sine and cosine mathematical model to solve the optimization problem. In this paper, a knee-driven many-objective sine-cosine algorithm (MaSCA-KD) is proposed. First, the Latin hypercube population initialization strategy is used to generate the initial population, in order to ensure that the population is evenly distributed in the decision space. Secondly, special points in the population, such as nadir point and knee points, are adopted to increase selection pressure and guide population evolution. In the process of environmental selection, the diversity of the population is promoted through diversity criteria. Through the above strategies, the balance of population convergence and diversity is achieved. Experimental research on the WFG series of benchmark problems shows that the MaSCA-KD algorithm has a certain degree of competitiveness compared with the existing algorithms. The algorithm has good performance and can be used as an alternative tool for many-objective optimization problems.