
IEMS Vol. 10, No. 1, pp. 7-14, March 2011.

A Shaking Optimization Algorithm
for Solving Job Shop Scheduling Problem

Ehab A. Abdelhafiez†
Mechanical and Industrial Engineering Department

Faculty of Engineering, Majmaah University, Majmaah, Saudi Arabia
Tel: +966-53-000-5671, E-mail: ehabaty@yahoo.com

Fahd A. Alturki

Electrical Engineering Department
Faculty of Engineering, King Saud University, Riyadh, Saudi Arabia

Tel: +966-53-000-5671, E-mail: falturki@ksu.edu.sa

Received, January 17, 2011; Revised, February 14, 2011; Accepted, February 21, 2011

Abstract. In solving the Job Shop Scheduling Problem, the best solution rarely is completely random; it follows
one or more rules (heuristics). The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated
Annealing, and Tabu search, which belong to the Evolutionary Computations Algorithms (ECs), are not efficient
enough in solving this problem as they neglect all conventional heuristics and hence they need to be hybridized
with different heuristics. In this paper a new algorithm titled “Shaking Optimization Algorithm” is proposed that
follows the common methodology of the Evolutionary Computations while utilizing different heuristics during
the evolution process of the solution. The results show that the proposed algorithm outperforms the GA, PSO,
SA, and TS algorithms, while being a good competitor to some other hybridized techniques in solving a selected
number of benchmark Job Shop Scheduling problems.

Keywords: Job Shop Scheduling Problem, Evolutionary Computation, Optimization, Genetic Algorithm(GA),

Intelligent Systems, Shaking Optimization Algorithm(SOA)

1. INTRODUCTION

The Job Shop Scheduling Problem (JSSP) may be

roughly sketched as follows: we are given a set of jobs
and a set of machines. Each job needs a number of op-
erations, each of which needs to be processed during an
uninterrupted time period of a given length on a given
machine. Each machine can handle at most one job at a
time. The purpose is to find a schedule that is an alloca-
tion of the operations to time intervals on the machines
that has minimum length. According to Peter Brucker
(2007), examples of practical applications of JSSP are
problems in flexible manufacturing, multiprocessor task
scheduling, robotic cell scheduling, railway scheduling,
and air traffic control which all have an underlying job-
shop structure. The JSSP is considered as a particularly
hard combinatorial optimization problem. Only very
special cases of the problem can be solved in polyno-
mial time, but their immediate generalizations are NP-
hard.

Since the mid-sixties, many general-purpose opti-
mization algorithms have been proposed for finding
near-optimal solutions to numerical, real-valued ‘black-
box’ problems for which exact and analytical methods
do not apply; most notably: Evolutionary Programming
(EP), Evolution Strategies (ES), and Genetic Algorithms
(GA). Recently, Particle Swarm Optimization (PSO)
and Differential Evolution (DE) have been introduced.
And finally Electromagnetism Algorithm (EM) has been
proposed as explained by Liya et al. (2007). Such algo-
rithms are belongs to the Evolutionary Computations
Algorithms (EC). They are based on the processes of
evolution in nature. They simulate the evolution of a
population of solutions based on the measured perform-
ance (fitness) of each member of the population. Simu-
lated evolution is implemented by the application of
various operators, such as mutation and recombination
between different solutions, as well as through selection
rules used to determine which members of the popula-
tion survive and reproduce. With each subsequent gen-
eration, the population is likely to show improvement in

† : Corresponding Author

8 Ehab A. Abdelhafiez·Fahd A. Alturki

overall performance, until some terminating condition is
met (Anthony, 2002).

These optimization algorithms showed some type
of limitations as they neglect all conventional heuristics.
In most of the NP-hard problems, the best solution
rarely be completely random, it follows one or more
rules (heuristics). For example, in one-machine job shop
scheduling problem, the best solution can be found us-
ing the Shortest Processing Time (SPT) rule. While, in
two-machine job shop scheduling problem, the best so-
lution can be found using Johnson Heuristic. In solving
cutting stock problems, Abdelhafiez (2008) has studied
81 different ordering rules He found that the decreasing
area is among the group of rules that give efficient re-
sults with all problem sets, while the increasing area rule
are among the rules that give poor results.

Recently, and because of the limitations associated
with the evolutionary computations algorithms, it be-
comes a common practice to improve the performance
of these tools by incorporating different search and heu-
ristic techniques. As an example, in solving JSSP, Mora-
glio et al. (2007) stated that, because of the complemen-
tary properties of genetic algorithms and conventional
heuristics, the hybrid approach often outperforms either
method operating alone. Accordingly, they proposed a
genetic local search algorithm (GTS) consisting of a
basic genetic algorithm with the addition of a Tabu sea-
rch optimization phase. Kamrul Hasan et al. (2009), after
analyzing the traditional GA solutions during solving
JSSPs, they realized that the solutions could be further
improved by applying simple rules or local search. Con-
sequently, they improved the performance of their pro-
posed GA by incorporating a simple priority rules. Fatih
Tasgetiren et al. (2006) stated that both PSO and DE
algorithms need to be hybridized with an efficient local
search method based on a variable neighborhood search
(VNS) method in order to improve the solution quality.
They stated also that the major obstacle of successfully
applying PSO and DE algorithms to combinatorial op-
timization problems is due to their continuous nature
and to remedy this drawback, the smallest position value
(SPV) rule is employed.

In general, the JSSP has been studied by many au-
thors and several algorithms have been proposed. The
recent research on JSSP is focused on Evolutionary Com-
putations Algorithms such as Simulated Annealing (SA)
(Steinhofel et al., 1999, Emin Aydin and Terence, 2004),
Taboo Search (TS) (Senthil and Selladurai 2007, Zhang
et al., 2008), Variable Neighborhood Search (Mladeno-
vic and Hansen, 1997, Mehmet and Emin, 2006), Ge-
netic Algorithm (GA) (Dirk and Christian 2004, José et
al., 2005), Ant Colony Optimization (ACO) (Ventresca
and Ombuki, 2004), Particle Swarm Optimization (PSO)
(Fatih, 2006), and Neural Network (NN) (Jain and Mee-
ran, 1998). A comprehensive survey of the JSS problem
can be found in (Albert and Luis, 1998, Chandrasekha-
ran and Oliver, 1999).

In this paper, a new optimization algorithm titled

“Shaking Optimization Algorithm (SOA)” is proposed
to be used to solve the JSSP. The algorithm emulates
shaking a box that was filled with different objects in
order to nest these objects in the minimum required space
or to align them correctly to give a room to add more
ones.

This paper presents the structure of the proposed
algorithm, the main procedures that are to be followed
in applying it, and the values of its parameters. At the
end, a comparative study is presented with the GA, PSO,
SA and TS, through solving a selected number of ben-
chmark instances of the JSSP.

2. OVERVIEW OF THE SHAKING OPTIMI-
ZATION ALGORITHM

The proposed algorithm follows the common me-
thodology of the Evolutionary Computations. In EC, si-
mulated evolution is implemented by the application of
various operators such as mutation and recombination in
a random manner. The proposed algorithm is a struc-
tured search algorithm that applies a number of heuris-
tics during this search process. It starts with reordering
the operations (of all jobs) according to some criteria
(weight). Due to this rearrangement, gaps may exist. To
close these gaps, another heuristic can be applied. The
process of reordering and gap closing is to be repeated
many times until some stopping criteria is met.

It is a hierarchy of four consecutive stages: local
search, collision, fine tuning and global optimization.

2.1 Local Search

The proposed approach assumes that the solution at
any time is a set of objects of different sizes that are
ordered in one raw tangent to each other. The objective
is to find the order that gives the minimum length of that
raw. This can be done through shaking these objects in
all directions (x&-x, y&-y, z&-z) searching for the shor-
test possible raw.

The coordinate system is not a real x-y-z system
but it is a system of priority rules that manage the sear-
ching process of the solutions. So, one can assume that
shaking along the x-axis, as an example, force the ob-
jects to reorder themselves in an ascending order ac-
cording to their size as a result of their inertia, and so on.

2.2 Collision

During the searching process, if a gap exists be-
tween object (A) and object (B) then, due to the shaking
process object (A) will hit (B) giving it a push in the
same direction of the shake forcing it to jump to another
location. If this new location is not better than the origi-
nal one, then object (B) will return back resulting in a
push to (A), which in return will jump to another loca-

 A Shaking Optimization Algorithm for Solving Job Shop Scheduling Problem 9

tion in the direction of this push.

2.3 Fine Tuning

At the end of each shake or number of repeated
shakes, the movement of the objects will start to slow-
down resulting in swapping of some objects where gaps
exist around them. In addition, some objects may rotate
around its center resulting in better penetration, accord-
ing to the nature of the problem under consideration, as
in the case of cutting and packing problem where items
may be allowed to rotate as shown by E. Abdelhafiz et
al. (2001).

2.4 Global Optimization

To recover from or avoid penetration in a local op-
timum, then after a certain number of iterations, or at
any other criteria, the current solution is to be kept in
solution-list, and then a strong shake is to be applied to
generate a new initial solution. This new solution will
include segments (blocks) from the last one. At the end
of the solution process, the best solution out of the solu-
tion-list is to be considered as the final solution.

3. PROCEDURES OF THE SHAKING
ALGORITHM

The proposed algorithm utilizes a number of heu-

ristic rules through the four consecutive stages as fol-
lows:

3.1 Stage 1, Local Search

The problem is to be represented using a suitable
coding system, and then a random initial solution is to
be developed. Following this, the coordinate system that
will be used in the evolution of this random solution is
to be identified. This coordinate system is to be repre-
sented by a selected number of priority rules. The shak-
ing force is to be defined after, where this force defines
the number of elements (objects) that are going to
change their positions at each shake. Each of the se-
lected rules is to be applied individually, then if im-
provement exists, the resulting solution will be kept, and
the remaining rules should be applied on this new solu-
tion.

To apply priority rules in this stage, it is required
first to assign a weight for each element (object). This
weight may be: time, area, penalty, relative importance
… etc. according to the nature of the problem under
consideration. The rules proposed to represent different
coordinates are:
• Ascending-order, according to the selected criteria

(weight), represents movement along x-axis direction
• Descending-order, according to the selected criteria,

represents movement along-x-axes direction,

The above two rules emulate the action of inertia

as a result of the shaking process where items with
heavy weights will try to move towards the end of the
sequence.
• Concave-order, according to the selected criteria,

represents movement along y-axes direction,
• Convex-order, according to the selected criteria,

represents movement along-y-axes direction,

The above two rules are corresponding to the effect

of inertia as well. Items with heavy weights will try to
move towards y-direction (the center of the order) or-y
direction (the terminals of the order), according to the
direction of movement, making the sequence to be simi-
lar to a wire that stretched from middle where it’s both
ends are fixed.
• Meshing of one small-item among large-ones, corre-

sponding to movement along Z-direction,
• Meshing of more than one small-item among large-

ones, corresponding to movement along Z-direction,

The last rules, represent the results that can be ob-

tained when one shakes some items up and down where
small items will try to penetrate (nest) among large ones.

3.2 Stage 2, Collision:

The objects that may hit each other are those ob-
jects have gap in-between. The definition of “gap” de-
pends on the problem under consideration. The gap may
be the delay time of a job or be the idle time of a ma-
chine as in the Job Shop Scheduling problem, where it
may be the difference in the number of entities or be the
difference between areas as in the Cutting Stock Prob-
lem … etc.

At the end of each shake, a scanning process is to
be carried out to find gap(s) between objects, and once a
gap is found, the insertion heuristic rule is to be applied
that execute the collision process.

3.3 Stage 3, Fine Tuning:

Slowing down the movement of the objects allows
some items to swap or rotate that may result in improv-
ing the solution. The items allowed to swap are those
items come just after a gap or followed by a gap, i.e.,
those items at the beginning or at the end of a block.
The rule that most describing this swapping action is
the one of Nowicki and Smutnicicki (1996) and has
been described by Emin and Terence (2004) as shown
in Figure 1.

10 Ehab A. Abdelhafiez·Fahd A. Alturki

Figure 1. Neighborhood of Nowicki and Smutnicicki

(1996).

3.4 Stage 4, Global optimization:

The shake to be applied to generate a new initial
solution from the last one will keep some blocks from
the current solution but may change their positions ran-
domly. The blocks that will remain are the compact
blocks which have no gaps. So, although this shake will
generate new solution with less efficiency than the
original one, it guarantees that the chance for this new
solution to evolve in a converging manner in high.

A Pseudo-code for the Shaking Optimization Algo-
rithm (SOA) is shown in Figure 2.

4. PARAMETERS OF THE SHAKING
OPTIMIZATION ALGORITHM

For any optimization algorithm, it is very important
to set the values of the parameters of that algorithm pro-
perly in order to guarantee a good flow during the evo-
lutionary process in order to obtain best performance of
the algorithm. The parameters regarding the SOA algo-
rithm, that were found affect the quality of the algorithm
performance, are:

• Population size (number of solutions),
• Number of iterations for each solution,
• Number of dimensions,
• Weight criteria,
• Shaking force,

5. APPLICATION OF THE SOA TO SOLVE
THE JOB SHOP SCHEDULING PROBLEM

5.1 Problem Representation

The problem representation described by Mehmet
and Emin (2006) is used here. Schedules are represented

• Generate initial solution, Sol1
• While stopping criteria for the number of Solutions not satisfied, repeat:

{
• Considering current solution,
• While stopping criteria for the number of iterations for each solution not satisfied, repeat:

{
(Shaking):

 For number of dimensions selected, repeat:
• Develop random number RND
• Starting from item # RND to item # (RND + shake force), Do:

• Reorder items in the range according to the priority rule associated with current dimension
• Evaluate current position,
• Keep position if improvement exists

(Collision):
 Scan for Gap existence between different items, then:

 Apply insertion priority rule, evaluate current position, and keep position if improvement exists,
(Fine Tuning):

 Scan for Gap existence between different items, then:
 Apply swapping priority rule, evaluate current position, and keep position if improvement exists,

}
• Copy current solution to Solt+1
• Move current solution to Solution-List, then
• Considering new solution Solt+1, :

{
 Scan for Blocks of items where no gap exists within any block
 Apply strong Shake considering each Block as one item while changing positions

}
}

Figure 2. Pseudo-code for the Shaking Optimization Algorithm (SOA).

 A Shaking Optimization Algorithm for Solving Job Shop Scheduling Problem 11

using a set of integers; each integer stands for an opera-
tion. It is also called chromosome of (n×m) gene repre-
senting a problem of n-jobs, m-machines. Each job is
represented m-times within the chromosome, while
these integers do not represent certain operations. This
way of representation prevents infeasibility, and always
provides a feasible active schedule. As an example, if
there is a chromosome of [2 1 2 2 1 3 1 3 3], where {1, 2,
3} represents {job1, job2, job3} respectively. Obviously,
there are totally 9 operations, but, 3 different integers,
each is repeated 3 times. The integer on the first gene, 2,
represents the first operation of the second job. Likewise,
the integer on the second gene, 1, represents the first
operation of the first job on corresponding machine.
Thus, the chromosome of [2 1 2 2 1 3 1 3 3] is under-
stood as [o21, o11, o22, o23, o12, o31, o13, o32, o33] where oij
stands for the ith operation of jth job.

5.2 SOA Parameters

A great attention has been paid in finding the best
setting of the proposed SOA algorithm in case of solv-
ing JSSP. The setting of the algorithm parameters for
the JSSP is as follows:

• The population size = n×m (n-jobs, m-machines),
• Number of iterations = 10×n×m,
• Number of dimensions = 6,
• Weight criteria is processing time, and
• Shaking force = random number between 3 and 7.

The algorithm will terminate if a pre specifies re-

sult is achieved (e.g., if the best known solution is
known) without the need to complete all number of it-
erations.

5.3 Computational Results

In order to evaluate the contribution of the pro-
posed SOA algorithm in solving the JSSP compared
with the performance of most common evolutionary
computation algorithms: Genetic Algorithm (GA), Par-
ticle Swarm Optimization algorithm (PSO), Simulated
Annealing algorithm (SA), and Tabu Search algorithm
(TS), computational experiments were carried out for
solving 14 selected benchmark instances of JSSP test
problems of different sizes given by Lawrence (1984)
and found at OR-Library (http://mscmga.ms.ic.ac.uk).

The proposed SOA algorithm is compared with the

following algorithms as found in literature:
Genetic Algorithms:

• Ventresca and Ombuki (2003)
• Kamrul Hasan el al. (2009)

Particle Swarm Optimization
• Pisut Pongchairerks and Voratas (2007)

Simulated Annealing
• Ventresca and Ombuki (2003)

Tabu Search
• Ventresca and Ombuki (2003)

Table 1 summarizes the results. It lists instance name,

problem size (n×m), the best known solution (BKS), and
the solution obtained by each algorithm.

The results in table 1 above show that the Shaking
Optimization Algorithm is a good competitor for the
evolutionary computation algorithms under study (GA,
PSO, SA, and TS) in solving all of the selected bench-
mark instances. It gives the best known solutions for 13
instances out of the 14 selected ones; La01, La02, La03,

Table 1. Experimental results, SOA VS. GA, PSO, SA, and TS.

Instance Size BKS GA (2003) GA (2009) PSO (2007) SA (2003) TS (2003) SOA

La01 10×5 666 667 667 666 666 666 666
La02 10×5 655 676 655 704 659 655 655
La03 10×5 597 627 617 630 620 617 597
La06 15×5 926 926 926 926 926 926 926
La07 15×5 890 891 890 922 890 890 890
La08 15×5 863 863 863 884 863 863 863
La11 20×5 1222 1222 1222 1222 1222 1222 1222
La12 20×5 1039 1039 1039 1039 1039 1039 1039
La13 20×5 1150 1150 1150 1150 1150 1150 1150
La16 10×10 945 993 994 1047 974 986 945
La17 10×10 784 804 794 865 796 796 784
La18 10×10 848 874 861 888 871 866 848
La19 10×10 842 895 890 958 871 870 842
La20 10×10 902 942 976 995 957 941 907

12 Ehab A. Abdelhafiez·Fahd A. Alturki

La06, La07, La08, La11, La12, La13, La16, La17, La18,
and La19 while, none of the other algorithms do. In ad-
dition, for instances; La03, La16, La17, La18, and La19
the proposed algorithm is the only one that gives the
BKS. And regarding the last instances La20, the pro-
posed algorithm SOA gives near BKS and still outper-
forms all of the other algorithms.

In addition to the above comparison with most
common evolutionary computation algorithms: GA, PSO,
SA, and TS, another comparison was carried out be-
tween the proposed SOA algorithm and a selected num-
ber of hybridized algorithms. The hybridized algorithms
selected are:
HGA:

A Hybrid Genetic Algorithm by Goncalves et al. as
stated by Emin and Terence (2004).
The algorithm combines a genetic algorithm, a sche-
dule generator procedure that generates parameter-
ized active schedules, and a local search procedure
which in turn employ two exchange local search
based on the disjunctive graph model of Roy and
Sussmann (1964) and the neighborhood of Nowicki
and Smutnicicki (1996),

PSOVNS:
Particle Swarm Optimization hybridized with an ef-
ficient local search method based on a Variable
Neighborhood Search method (VNS) by Fatih et al.
(2006),

SAGA:
Hybrid Simulated Annealing with Genetic Algo-
rithm by Ventresca and Ombuki (2003),

TS:
First-last neighborhood structure with dynamic Tabu
length by Senthil Vemurugan and Selladurai (2007).

Table 2 summarizes the results of the comparison.

The results in Table 2 above show that the Shaking
Optimization Algorithm is still good competitor for the
hybridized evolutionary computation algorithms in solv-
ing all the selected benchmark instances. It outperform
the SAGA by Ventresca and Ombuki (2003), and it
gives the same results exactly as do the Hybrid Genetic
Algorithm by Goncalves et al. (2004), while the Tabu
search by Senthil Vemurugan and Selladurai (2007)
outperform the two algorithms regarding the last in-
stance La20, but fail to give the same result for instance
La16. In addition, the proposed algorithm outperforms
all other algorithms regarding solution times. As an ex-
ample, the solution times for instances La01 to La10
using the HGA algorithm range from 37 seconds for
La01 to 99 seconds for La08 while, these times range
from 2 seconds to 60 seconds using the proposed algo-
rithm.

6. CONCLUSIONS

In this paper a new algorithm titled “Shaking Op-
timization Algorithm (SOA)” is proposed to be used in
solving the Job Shop Scheduling Problem (JSSP). The
proposed algorithm follows the common methodology
of the Evolutionary Computations where, evolution is
implemented by the application of various operators.
This SOA algorithm is a structured search algorithm
which has low degree of randomness compared with
most of other Evolutionary Computations Algorithms.
The algorithm emulates the actual shaking process. It
consists of four stages; namely, local search, collision,
fine tuning and global optimization. It starts with reor-
dering the operations according to some criteria and due
to this rearrangement, gaps may exist. To close these
gaps, heuristic rules can be applied. The process of reor-

Table 2. Experimental results, SOA vs. HGA, PSOVNS, SAGA, and TS.

Instance Size BKS HGA (2004) PSOVNS (2006) SAGA (2003) TS (2007) SOA

La01 10×5 666 666 - - 666 666
La02 10×5 655 655 - - 655 655
La03 10×5 597 597 - - 597 597
La06 15×5 926 926 - - 926 926
La07 15×5 890 890 - - 890 890
La08 15×5 863 863 - - 863 863
La11 20×5 1222 1222 - - 1222 1222
La12 20×5 1039 1039 - - 1039 1039
La13 20×5 1150 1150 - - 1150 1150
La16 10×10 945 945 945 988 946 945
La17 10×10 784 784 - 793 784 784
La18 10×10 848 848 - 862 848 848
La19 10×10 842 842 842 874 842 842
La20 10×10 902 907 - 926 902 907

 A Shaking Optimization Algorithm for Solving Job Shop Scheduling Problem 13

dering and gap closing is to be repeated many times
until some stopping criteria is met. A selected 14 in-
stances of benchmark problems from different sizes has
been solved, and the results obtained show that the pro-
posed algorithm outperforms GA, PSO, ST, and TS. In
addition, the results show that, the SOA algorithm out-
performs the Genetic Algorithm hybridized with Simu-
lated Annealing Algorithm, while it gives the same re-
sults exactly as does the Genetic Algorithm hybridized
with two exchange local search.

The main contribution of the proposed algorithm is
its effectiveness with respect to implementation and
processing time as it works alone without the need for
hybridization with other algorithms.

REFERENCES

Moraglio, A., Ten Eikelder, H. M. M., and Tadei, R.
(2001), Genetic local search for job shop schedu-
ling, Technical Report CSM-435 ISSN, 1744-8050.

Jain, A. S. and Meeran, S. (1998), Job shop scheduling
using neural networks, International Journal of
Production Research, 36, 1249-1272.

Albert Jones, and Luis C. Rabelo (1998), Survey of job
shop scheduling techniques, NISTIR, National Ins-
titute of Standards and Technology, Gaithers-burg,
MD.

Anthony Jack Carlisle (2002), Applying the particle
swarm optimizer to non-stationary environments, A
Dissertation Submitted to the Graduate Faculty of
Auburn University in Partial Fulfillment of the
Requirements of the Degree of Doctor of Philo-
sophy, Auburn University.

Chandrasekharan Rajendran, and Oliver Holthaus (1999),
A comparative study of dispatching rules in dyna-
mic flow shops and job shops, European Journal of
Operational Research, 116, 156-170.

ChaoYong Zhang, PeiGen Li,YunQing Rao, and ZaiLin
Guan (2008), A very fast TS/SA algorithm for the
job shop scheduling problem, Computers and Ope-
rations Research, 35, 282-294.

Dirk C. Mattfeld a, and Christian Bierwirth (2004), An
efficient genetic algorithm for job shop scheduling
with tardiness objectives. European Journal of Ope-
rational Research, 155, 616-630.

Abdelhafiez, E. (2008), Efficient items-ordering rules in
cutting stock problem, 9th International Conference
on Mechanical Design and Production Engineering
MDP9, Cairo-Egypt.

Abdelhafiz, E., Elmaghraby, A. S., and Hassan, M. F.
(2001), A genetic approach for 2-D irregular cut-
ting stock problems, Proceedings of ISCA 10th in-
ternational Conference on intelligent Systems, USA,
114-117.

José Fernando Gonçalves, Jorge José de Magalhães
Mendes, and Maurício G. C. Resende (2005), A hy-
brid genetic algorithm for the job shop scheduling
problem. European Journal of Operational Rese-
arch, 167, 77-95.

Steinhofel, K., Albrecht, A. and Wong, C. K. (1999),
Two simulated annealing-based heuristics for the
job shop scheduling problem, European Journal of
Operational Research, 118, 524-548.

Liya GU, Alexandru Sava, Sophie Hennequin, and Xia-
olan XIE (2007), Electromagnetism-like mechanism
algorithm for stochastic assembly line balancing
with reliability constant, Proceeding of Interna-
tional Conference on Industrial Engineering and
System Management, IESM, Beijing-China.

Emin Aydin, M. and Terence C. Fogarty (2004), A si-
mulated annealing algorithm for multi-agent sys-
tems: a job shop scheduling application, Journal of
Intelligent Manufacturing, 15.

Fatih Tasgetiren, M., Mehmet Sevkli, Yun-Chia Liang,
and Mutlu Yenisey, M. (2006), A particle swarm
optimization and differential evolution algorithms
for job shop scheduling problem, International Jo-
urnal of Operations Research, 3, 120-135.

Ventresca, M. and Ombuki, B. M. (2003), Meta-heuri-
stics for the job shop scheduling problem, Techni-
cal Report # CS-03-12.

Ventresca, M. and Ombuki, B. M. (2004), Ant Colony
optimization for job shop scheduling problem, Te-
chnical Report # CS-04-04.

Mehmet Sevkli, and Emin Aydin, M. (2006), Collabora-
ting variable neighbourhood search algorithms for
job shop scheduling problems, Proceedings of 5th
International Symposium on Intelligent Manufactu-
ring Systems, 450-461.

Mehmet Sevkli, and Emin Aydin, M. (2006), Variable
Neighbourhood Search for job shop scheduling
problems, Journal Of Software, 1, 34-39.

Mladenovic, N. and Hansen, P. (1997), Variable Neigh-
borhood Search. Computers and Operations Rese-
arch, 24, 1097-1100.

Senthil Vemurugan, P. and Selladurai, V. (2007), A
Tabu Search Algorithm for job shop scheduling
problem with industrial scheduling case study, In-
ternational Journal Of Soft Computing, 2(4), 531-
537.

Peter Brucker (2007), The job-shop problem: old and
new challenges. MISTA.

Pisut Pongchairerks, and Voratas Kachitvichyanukul
(2007), A comparison between algorithms VNS with
PSO and VNS without PSO for job-shop schedu-
ling problems. International Journal of Computa-
tional Science, 1, 179-191.

Kamrul Hasan, S. M., Ruhul Sarker, Daryl Essam, and

14 Ehab A. Abdelhafiez·Fahd A. Alturki

David Cornforth (2009), Memetic Algorithms for
solving job-shop scheduling problems, Memetic
Computing Journal, 1, 69-83.

Vesterstrom, J. and Thomsen, R. (2004), A comparative

study of differential evolution, particle swarm opti-
mization, and evolutionary algorithms on numeri-
cal benchmark problems, Evolutionary Computa-
tion, CEC2004, Congress on, 2(19-23), 1980-1987.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

