• 제목/요약/키워드: Optimization Tool

검색결과 1,026건 처리시간 0.026초

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

Parametric Modeling and Shape Optimization of Offshore Structures

  • Birk, Lothar
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.29-40
    • /
    • 2006
  • The paper presents an optimization system which integrates a parametric design tool, 3D diffraction-radiation analysis and hydrodynamic performance assessment based on short and long term wave statistics. Controlled by formal optimization strategies the system is able to design offshore structure hulls with superior seakeeping qualities. The parametric modeling tool enables the designer to specify the geometric characteristics of the design from displacement over principal dimensions down to local shape properties. The computer generates the hull form and passes it on to the hydrodynamic analysis, which computes response amplitude operators (RAOs) for forces and motions. Combining the RAOs with short and long-term wave statistics provides a realistic assessment of the quality of the design. The optimization algorithm changes selected shape parameters in order to minimize forces and motions, thus increasing availability and safety of the system. Constraints ensure that only feasible designs with sufficient stability in operation and survival condition are generated. As an example the optimization study of a semisubmersible is discussed. It illustrates how offshore structures can be optimized for a specific target area of operation.

공작기계의 이송계 제어 시스템의 최적화 (Optimization of Motion Control System on the Machine Tool)

  • 박인준;곽경남;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.336-340
    • /
    • 1997
  • This paper is a study about motor technic of motion and feedforward control in order to shape cutting control on the machine tool. The shape error caused by delay of the servo system in the direction of radius at the time of circular cutting is reduced by feedforward control, shape error generated by the position command delay is minimized by using the acceleration/deceleration time constant after the interpolation. The study was verified to optimization of motion control on experiments of a vertical machining center of the machine tool.

  • PDF

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

유한요소해석을 이용한 5축 복합가공기 헤드 구조물의 최적 설계에 관한 연구 (A study on the design optimization of the head stucture of 5-axis machining center using finite element analysis)

  • 김재선;이명호;윤재웅
    • 한국융합학회논문지
    • /
    • 제12권9호
    • /
    • pp.161-168
    • /
    • 2021
  • 복합가공기 분야에서 고속 및 고정밀화에 대한 요구가 늘어남에 따라 복합가공기의 강성과 진동에 관한 관심이 증가하고 있다. 그러나 경험에 의존한 설계로 인해 개발 시간이 많이 소요되며 적절한 설계에도 어려움이 많아 공작기계 설계에 구조 최적화 FEM의 활용이 많아지고 있다. 그러나, 현재 구조물의 응력 분포를 통한 최적화를 주로 활용하고 있어 구조물의 진동 상태를 고려하여 최적화하기에는 어려움이 있다. 본 논문에서는 5축 복합가공기에서 가공에 가장 많은 영향을 끼치는 헤드 구조물의 최적화를 위하여 유한요소해석을 활용한 정적 구조해석, 모드 해석, 가진 주파수 해석을 진행하였으며, 도출된 응력 분포, 변형, 고유진동수, 가진 주파수 그래프를 활용하고 적절한 목적함수와 설계변수를 설정하여 정강성과 동강성을 모두 고려한 위상 최적화 해석 방법을 제시하고자 한다.

미소가공을 위한 마이크로 공작기계 최적설계 (Optimal Design of Micro Machine Tool for Micro Precision Machining)

  • 황준;정의식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.477-478
    • /
    • 2006
  • This paper presents the results of miniaturized micro milling machine tool development for micro precision machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Design optimization has been performed to optimize the design variables of micro machine tool to minimize the volume, weight and deformation of machine tool structure and to maximize the stiffness in terms of static, dynamic, and thermal characteristics. This study presents the assessment of the technology incentive for the minimization of machine tool in the quantitative context of static, dynamic stiffness, thermal resistance and thus the accuracy implications.

  • PDF

사출압력 최소화와 웰드라인 방지를 위한 자동차용 사출성형 부품의 최적설계 (Design Optimization of an Automotive Injection Molded Part for Minimizing Injection Pressure and Preventing Weldlines)

  • 박창현;표병기;최동훈;구만서
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.66-72
    • /
    • 2011
  • Injection pressure is an important factor in filling procedure for injection molded parts. In addition, weldlines should be avoided to successfully produce injection molded parts. In this study, we optimally obtained injection molding process parameters that minimize injection pressure. Then, we determined the thickness of the part to avoid weldlines. To solve the optimization problem proposed, we employed MAPS-3D (Mold Analysis and Plastics Solution-3 Dimension), a commercial CAE tool for injection molding analysis, and PIAnO (Process Integration, Automation, and Optimization) as a commercial PIDO (Process Integration and Design Optimization) tool. We integrated MAPS-3D into PIAnO, automated the analysis and design procedure, and performed optimization by employing PQRSM (Progressive Quadratic Response Surface Method) equipped in PIAnO. We successfully obtained optimization results, which demonstrates the effectiveness of our design method.

유전자 알고리듬을 이용한 공작기계구조물의 정강성 해석 및 다목적 함수 최적화(II) (Static Compliance Analysis & Multi-Objective Optimization of Machine Tool Structures Using Genetic Algorithm(II))

  • 이영우;성활경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.231-236
    • /
    • 2001
  • The goal of multiphase optimization of machine structure is to obtain 1) light weight, 2) statically and dynamically rigid structure. The entire optimization process is carried out in two phases. In the first phase, multiple optimization problem with two objective functions is treated using pareto genetic algorithm. Two objective functions are weight of the structure, and static compliance. In the second phase, maximum receptance is minimized using genetic algorithm. The method is applied to design of quill type machine structure with back column.

  • PDF

선삭 공정에서의 고능률 가공을 위한 이송량의 최적화 (Feed Optimization for High-Efficient Machining in Turning Process)

  • 강유구;조재완;김석일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1338-1343
    • /
    • 2007
  • High-efficient machining, which means cutting a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on the cutting power regulation was proposed to realize the high-efficient machining in turning process. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

  • PDF

직교배열과 분산분석법을 이용한 사출금형 냉각시스템 파라미터의 시뮬레이션 최적설계 (A Simulation-based Optimization of Design Parameters for Cooling System of Injection Mold by using ANOVA with Orthogonal Array)

  • 박종천;신승민
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.121-128
    • /
    • 2012
  • The optimization of cooling system parameters for designing injection mold is very important to acquire the highest part quality. In this paper, the integration of computer simulations of injection molding and Analysis of Variance(ANOVA) with orthogonal array was used as a design tool to optimize the cooling system parameters aimed at minimizing the part warpage. The design optimizer was applied to find the optimum levels of cooling system parameters for a dustpan. This optimization resulted in more uniform temperature distribution over the part and significant reduction of a part warpage, showing the capability of present method as an effective design tool. The whole optimization process was performed systematically in a proper number of cooling simulations. The design optimizer can be utilized effectively in the industry practice for designing mold cooling system with less cost and time.