• Title/Summary/Keyword: Optimal-trajectory control

검색결과 205건 처리시간 0.031초

유전자 알고리즘을 이용한 이족 보행 로봇의 최적 설계 및 최적 보행 궤적 생성 (Optimal Gait Trajectory Generation and Optimal Design for a Biped Robot Using Genetic Algorithm)

  • 권오흥;강민성;박종현;최무성
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.833-839
    • /
    • 2004
  • This paper proposes a method that minimizes the consumed energy by searching the optimal locations of the mass centers of links composing of a biped robot using Real-Coded Genetic Algorithm. Generally, in order to utilize optimization algorithms, the system model and design variables must be defined. Firstly, the proposed model is a 6-DOF biped robot composed of seven links, since many of the essential characteristics of the human walking motion can be captured with a seven-link planar biped walking in the saggital plane. Next, Fourth order polynomials are used for basis functions to approximate the walking gait. The coefficients of the fourth order polynomials are defined as design variables. In order to use the method generating the optimal gait trajectory by searching the locations of mass centers of links, three variables are added to the total number of design variables. Real-Coded GA is used for optimization algorithm by reason of many advantages. Simulations and the comparison of three methods to generate gait trajectories including the GCIPM were performed. They show that the proposed method can decrease the consumed energy remarkably and be applied during the design phase of a robot actually.

결합된 퍼지 제어기를 이용한 볼과 플레이트 시스템에서의 추정제어기 설계 (Tracking Control of Ball and Plate System via Integrated Fuzzy Controllers)

  • 서민석;현창호;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.223-225
    • /
    • 2006
  • A ball moving on a beam is a typical nonlnear dynamic system, which is often adopted to proof test diverse control schemes. Ball and plate system is the extension of the traditional ball and beam problem that moves a metal ball on a rigid plate. In this paper, a trajectory planning and tracking problem is proposed for ball and plate system, which is to control the ball from a point to another without hitting the obstacles. Our scheme is composed of three controllers, TS type optimal path tracking controller, mandani type obstacle avoidance controller and trajectory planning controller that determines the desired trajectory. But this type of construction can give rise to chattering executions. Because the difference of contributions from concurrent controllers can cause behaviors unsmoothly. We propose fuzzy pid supervision control1er to handle this problem.

  • PDF

Transient Performance Improvement in the Boundary Control of Boost Converters using Synthetic Optimized Trajectory

  • Feng, Gaohui;Yuan, Liqiang;Zhao, Zhengming;Ge, Junjie;Ye, Xiuxi;Lu, Ting
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.584-597
    • /
    • 2016
  • This paper focuses on an improvement in the transient performance of Boost converters when the load changes abruptly. This is achieved on the basis of the nature trajectory in Boost converters. Three key aspects of the transient performance are analyzed including the storage energy change law in the inductors and capacitors of converters during the transient process, the ideal minimum voltage deviation in the transient process, and the minimum voltage deviation control trajectory. The changing relationship curve between the voltage deviation and the recovery time is depicted through analysis and simulations when the load suddenly increases. In addition, the relationship curve between the current fluctuation and the recovery time is obtained when the load suddenly decreases. Considering the aspects of an increasing and decreasing load, this paper proposes the transient performance synthetic optimized trajectory and control laws. Through simulation and experimental results, the transient performances are compared with the other typical three control methods, and the ability of proposed synthetic trajectory and control law to achieve optimal transient performance is verified.

공기압 액츄에이터의 시간지연을 고려한 최적 서보제어 (Optimal servo control of pneumatic actuator with time-delay)

  • 진상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1455-1458
    • /
    • 1996
  • In this paper trajectory tracking control problems are described for a robot manipulator by using pneumatic actuator. Under the assumption that the so-called independent joint control is applied to the control system, the dynamic model for each link is identified as a linear second-order system with input time-delay by the step response. Then, an optimal servo controller is designed by taking account of such a time-delay. The effectiveness of the proposed control method is illustrated through some simulations and experiments for the robot manipulator.

  • PDF

수송기계구조물의 대기권 재진입 기준궤도 설계 (Reference Trajectory Design for Atmosphere Re-entry of Transportation Mechanical Structure)

  • 박중현;엄위섭
    • 동력기계공학회지
    • /
    • 제7권4호
    • /
    • pp.67-73
    • /
    • 2003
  • The entry guidance design involves trajectory optimization and generation of a drag acceleration profile as the satisfaction of trajectory conditions during the entry flight. The reference trajectory is parameterized and optimized as piecewise linear functions of the velocity. A regularization technique is employed to achieve desired properties of the optimal drag profile. The regularized problem has smoothness properties and the minimization of performance index then prevents the drag acceleration from varying too fast, thus eliminating discontinuities. This paper shows the trajectory control using the simple control law as well as the information of reference drag acceleration.

  • PDF

페인팅로보트의 자동궤적계획시스템 개발에 관한 연구 (Development of an automatic trajectory planning system(ATPS) for painting robots)

  • 서석환;우인기;노성기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.394-399
    • /
    • 1990
  • We develop an automatic trajectory planning system (ATPS) for painting robots by proposing a new trajectory planning scheme. The new scheme considers geometric modeling, painting mechanics, and robot dynamics to output an optimal trajectory (in the sense of coating thickness and painting time) based on the CAD data describing the shape of objects, The new scheme is implemented in SUN/4 workstation to develop an ATPS for painting robots. To test the validity of the new scheme and to illustrate the developed system, numerous runs are performed and analyzed.

  • PDF

최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석 (Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method)

  • Kim, C.B.;Lee, S.H.
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

이족 보행 로봇의 궤적의 최적화 계획에 관한 연구 (A Study on the Trajectory Optimization Planning of Biped Walking Machine)

  • 김창부;조현석
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.157-167
    • /
    • 1998
  • In this paper it is purpose that reduces joint torques and their rate of change through optimizing trajectory planning of biped walking machine. The motion of biped walking machine is divided into leg motion for walking and body motion for keeping balance. The leg motion is planned by three phases, that are deploy, swing, and place phases, in terms of the state of foot against floor. The distribution of time assigned to each phase is optimized and that causes leg joint torques and their rate of change to minimize. The body notion is produced by using optimal control theory which minimizes body joint torques and satisfies Z.M.P. constraints defined as region of each phase.

  • PDF

퍼지최적 부하분배에 의한 다중협력 로보트 매니퓰레이터의 최적시간 제어 (Time-Optimal Control for Cooperative Multi-Robot Manipulators Based on Fuzzy Optimal Load Distributioin)

  • 조현찬;김용호;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.111-119
    • /
    • 1996
  • In this paper, we propose time-optimal trajectory planning algorithms for cooperative multi-robot manipulators system considering optimal load distribution. Internal forces essentially effect on time optimal trajectory planning and if they are comitted, the time optimal scheme is not no longer true. Therefore, we try to find the internal force factors of cooperative robot manipulators system in a time-optimal aspect. In this approach, a specific generalized inverse is used and is fuzzified for the purpose. In this optimal method, the fuzzy logic concept is used and selected for diminishing computation time, for finding the load distribution factors.

  • PDF

무인기를 위한 최적 경로점 유도 (Optimal Waypoint Guidance for Unmanned Aerial Vehicles (UAVs))

  • 유창경;신효상;탁민제
    • 제어로봇시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.240-245
    • /
    • 2005
  • In this paper, planar waypoint guidance synthesis for UAVs using the LQ optimal impact-angle-control guidance law is proposed. We prove that the energy-optimal control problem with the constraint of passing through the waypoints is equivalent to the problem of finding the optimal pass angles on each waypoint of the optimal impact-angle-control law. The optimal pass angles can be obtained as a numerical solution of the simple pass angle optimization problem that requires neither input parameterization nor constraints. The trajectory obtained by applying the optimal impact-angle-control law with these optimal pass angles becomes energy optimal.